Wednesday, March 3, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

You know the “enhance” function TV cops use on pictures? It’s real now.

September 4, 2019
in Machine Learning
You know the “enhance” function TV cops use on pictures? It’s real now.
591
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

There’s a famous trope in crime TV shows: The characters are peering anxiously at a grainy surveillance camera, when suddenly they see their suspect — in a blurry image that’s only visible for a second.

“Wait a second,” someone says. “Zoom in … enhance.”

You might also like

Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha

An open-source machine learning framework to carry out systematic reviews

Microsoft’s Azure Arc multi-cloud platform now supports machine learning workloads – TechCrunch

And suddenly they’re looking at a crystal-clear, perfect image of their suspect.

The whole concept is, of course, silly (and the trope has come in for mockery). If the camera only captured so many pixels in the first place, a button to retrieve a clearer image would have to be magic. Even in the distant, Star Trek future, after all, you can’t create information out of thin air.

Except … the enhance button might finally be here.

In the latest cool advance for artificial learning and machine intelligence, researchers have created a code that can reconstruct blurry, low-resolution images of faces to clear, higher-resolution versions that come very close to what the actual faces look like. This development comes in an area of machine-learning research called “face super-resolution,” which focuses on reconstructing faces from distorted or low-resolution images.

In a new paper recently accepted to a machine-learning conference, “Progressive Face Super-Resolution via Attention to Facial Landmark,” by researchers at the Korea Advanced Institute of Science and Technology, detailed faces are reconstructed from 16-by-16, highly pixelated images. Here are some examples from the paper:


Jonathan Fly, a machine-learning enthusiast who replicates (and goofily riffs on) recent machine-learning advances at his blog I Forced a Bot, put together this impressive collection of images, where the approach laid out in the new paper is able to do, on the whole, a shockingly good job predicting faces from pixelated images:


Jonathan Fly

Okay, so the predicted faces are … a bit off. A weird number of them have mustaches, and even the ones that are almost right look kind of creepy, like they were assembled by a robot with no comprehension of what a human is but tons of examples of what we look like. (That’s because that’s exactly how they were assembled.)

But on the whole, they’re pretty good — it’d be way easier to identify a person from the AI-generated images than from the pixelated starting images.

To learn more about how this worked, I asked Law to give it a shot with a picture of me. The results show some of the ways this can be impressive — and some of the ways it can be horrifying.


Photos of the author as generated by bots.

Jonathan Law

On the far left, top row, you have the blurry, 16-by-16-pixel image that the AI starts with. (In the bottom row, it’s altered to have higher contrast.) Then you have some guesses from the bot — a “best case” guess where it did unusually well, a “more realistic” case with output that’s pretty typical, and some horrifying images showing how confused the computer gets if the facial features aren’t where the computer expects them.

My conclusion, after running these funhouse mirror images by some friends to ask whether they’d recognize me if they saw these pics on the evening news: The “enhance” button may not be good enough for use by law enforcement yet, but it’s getting quite close.

As we get better at using computers to fill in the blanks in low-quality images, law enforcement very well might start using technology like this to turn a blurry surveillance image into a reasonable sketch of the person they’re looking for. Photo editing programs might offer “super-resolution” filters that let you get an image that appears higher-resolution than it started out as.

And in the not-too-distant future, the “enhance” button, a staple of science fiction and police procedurals, might just be available for anyone who wants it. (You can download the code and try yourself.)

How is this possible?

Super-resolution and how it works

Machine-learning research focused on computer vision has seen all sorts of cool triumphs lately, from generating faces that don’t exist to making fake videos in which the Mona Lisa talks.

AI enhancement of blurry images is just the latest leap, and one of the more unexpected ones. The argument against the existence of the “enhance” button is simple — you can’t get information out of nowhere. If an image is blurry because the camera didn’t catch enough of a person’s face, then there’s no button that will fill in those blanks.


PhD Comics

What you can do, though — and what turns out to be enough to recreate images with pretty high accuracy — is use all of your other knowledge about how human faces look to add information from the little that you started with. For example, we already know that human faces have a nose and cheeks and eyes. Therefore, all we need to do with the few pixels we have is guess which nose, out of the common human noses, best matches our few data points.

The thing the AI is doing to generate the above images is a lot more complicated — but that’s the general idea. The way to generate information out of nothingness is to start with reasonable assumptions about what you’re looking at, and to use the information you have about facial features in general to predict these facial features in particular. And it turns out it works pretty well.

In the past 10 years, breakthrough after breakthrough in machine learning has challenged our conception of what it’s possible for computers to do. We’ve learned how to create algorithms that generate images of people who never existed, that write poetry, and that animate the Mona Lisa. The new capabilities of AI are forcing us to reconsider what’s possible — and the “enhance button,” escaped from the realm of TV, is just the latest example.

Sign up for the Future Perfect newsletter. Twice a week, you’ll get a roundup of ideas and solutions for tackling our biggest challenges: improving public health, decreasing human and animal suffering, easing catastrophic risks, and — to put it simply — getting better at doing good.

Credit: Google News

Previous Post

Here’s how to build on your email success

Next Post

HSBC completes first blockchain-based letter of credit transaction using Yuan

Related Posts

Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha
Machine Learning

Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha

March 3, 2021
An open-source machine learning framework to carry out systematic reviews
Machine Learning

An open-source machine learning framework to carry out systematic reviews

March 3, 2021
Microsoft’s Azure Arc multi-cloud platform now supports machine learning workloads – TechCrunch
Machine Learning

Microsoft’s Azure Arc multi-cloud platform now supports machine learning workloads – TechCrunch

March 2, 2021
Opportunity, Trends, Share, Top Companies Analysis (Based on 2021 COVID-19 Worldwide Spread) – NeighborWebSJ
Machine Learning

Opportunity, Trends, Share, Top Companies Analysis (Based on 2021 COVID-19 Worldwide Spread) – NeighborWebSJ

March 2, 2021
The case for Bayesian Learning in mining
Machine Learning

The case for Bayesian Learning in mining

March 2, 2021
Next Post
HSBC completes first blockchain-based letter of credit transaction using Yuan

HSBC completes first blockchain-based letter of credit transaction using Yuan

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha
Machine Learning

Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha

March 3, 2021
The Symbolic World: Raising A Turing’s Child Machine (1/2) | by Puttatida Mahapattanakul | Feb, 2021
Neural Networks

The Symbolic World: Raising A Turing’s Child Machine (1/2) | by Puttatida Mahapattanakul | Feb, 2021

March 3, 2021
Top 10 ‘Brand Guardian’ Most Famous, Most Reputable CEOs
Marketing Technology

Top 10 ‘Brand Guardian’ Most Famous, Most Reputable CEOs

March 3, 2021
Linux Mint may start pushing high-priority patches to users
Internet Security

Linux Mint may start pushing high-priority patches to users

March 3, 2021
Microsoft Ignite Data and Analytics roundup: Platform extensions are the key theme
Big Data

Microsoft Ignite Data and Analytics roundup: Platform extensions are the key theme

March 3, 2021
An open-source machine learning framework to carry out systematic reviews
Machine Learning

An open-source machine learning framework to carry out systematic reviews

March 3, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha March 3, 2021
  • The Symbolic World: Raising A Turing’s Child Machine (1/2) | by Puttatida Mahapattanakul | Feb, 2021 March 3, 2021
  • Top 10 ‘Brand Guardian’ Most Famous, Most Reputable CEOs March 3, 2021
  • Linux Mint may start pushing high-priority patches to users March 3, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates