Tuesday, April 13, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Why Machine Learning at the Edge? – Predictive Analytics Times

December 8, 2019
in Machine Learning
Scientists Outline the Promises and Pitfalls of Machine Learning in Medicine – Predictive Analytics Times
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Originally published in SAP Blogs, October 16, 2019.

For today’s leading deep learning methods and technology, attend the conference and training workshops at Deep Learning World Las Vegas, May 31-June 4, 2020.  

You might also like

ANZ Bank: We’ve been using machine learning for 20 years

Data Science And Machine Learning Service Market Growth Due to COVID-19 Spread | ZS, LatentView Analytics, Mango Solutions, Microsoft, International Business Machine – KSU

A.I. For Raspberry Pi Pico: Uctronics TinyML Learning Kit Review

Machine learning algorithms, especially deep learning neural networks often produce models that improve the accuracy of prediction. But the accuracy comes at the expense of higher computation and memory consumption. A deep learning algorithm, also known as a model, consists of layers of computations where thousands of parameters are computed in each layer and passed to the next, iteratively. The higher the dimensionality of the input data (e.g., a high-resolution image), the higher the computational need.  GPU farms in the cloud are often used to meet these computational requirements.

When machine learning is used for use cases such as detecting the quality of a product in manufacturing, predicting the health of a critical piece of equipment, or video surveillance, it is expected that inference will be done in near real-time. Inferencing at the cloud requires moving data from the source to the cloud and introduces several challenges: (a) it is costly to bring data to the cloud for real-time inference, (b) bringing data from the edge to the cloud will lead to higher network latency, (c) sending data from the edge to the cloud introduces scalability issues as the number of connected devices increase, and (d) security concerns of user data risks sending data to the cloud.

Edge computing is a distributed computing paradigm which brings computation and data storage closer to the location where it is needed, to improve response times and save bandwidth. Though edge computing addresses connectivity, latency, scalability and security challenges, the computational resource requirements for deep learning models at the edge devices are hard to fulfill in smaller devices.

Before determining the type of hardware for edge devices, it is important to establish key performance metrics for the inference. At a high level, the key performance metrics for machine learning at the edge can be summarized as latency, throughput, energy consumption by the device, and accuracy. The latency refers to the time it takes to infer one data point, throughput is the number of inference calls per second, and accuracy is the confidence level of the prediction output required by the use case. Depending on these requirements, one can take one or more of the following approaches to speed up the inference at the resource-constrained edge device.

The right machine learning model for edge device

Researchers have found that reducing the number of parameters in deep neural network models help decrease the computational resources needed for model inference. Some popular models which have used such techniques with minimum (or no) accuracy degradation are YOLO, MobileNets, Solid-State Drive (SSD), and SqueezeNet. Many of these pre-trained models are available to download and use in open-source platforms such as TensorFlow or PyTorch.

To continue reading this article, click here.



Credit: Google News

Previous Post

Online age verification will have to involve biometrics: Former eSafety chief

Next Post

Get yourself a USB condom

Related Posts

ANZ Bank: We’ve been using machine learning for 20 years
Machine Learning

ANZ Bank: We’ve been using machine learning for 20 years

April 13, 2021
Data Science And Machine Learning Service Market Growth Due to COVID-19 Spread | ZS, LatentView Analytics, Mango Solutions, Microsoft, International Business Machine – KSU
Machine Learning

Data Science And Machine Learning Service Market Growth Due to COVID-19 Spread | ZS, LatentView Analytics, Mango Solutions, Microsoft, International Business Machine – KSU

April 13, 2021
A.I. For Raspberry Pi Pico: Uctronics TinyML Learning Kit Review
Machine Learning

A.I. For Raspberry Pi Pico: Uctronics TinyML Learning Kit Review

April 13, 2021
Artificial Intelligence Research at Duke
Machine Learning

Artificial Intelligence Research at Duke

April 13, 2021
AI, Machine And Deep Learning: Filling Today’s Need for Speed And Iteration
Machine Learning

AI, Machine And Deep Learning: Filling Today’s Need for Speed And Iteration

April 12, 2021
Next Post
Get yourself a USB condom

Get yourself a USB condom

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

These new vulnerabilities put millions of IoT devices at risk, so patch now
Internet Security

These new vulnerabilities put millions of IoT devices at risk, so patch now

April 13, 2021
BRATA Malware Poses as Android Security Scanners on Google Play Store
Internet Privacy

BRATA Malware Poses as Android Security Scanners on Google Play Store

April 13, 2021
6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome
Data Science

6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome

April 13, 2021
ANZ Bank: We’ve been using machine learning for 20 years
Machine Learning

ANZ Bank: We’ve been using machine learning for 20 years

April 13, 2021
Apple looking to close the gap between web and app privacy
Internet Security

Who do I pay to get the ‘phone’ removed from my iPhone?

April 13, 2021
Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft
Data Science

Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft

April 13, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • These new vulnerabilities put millions of IoT devices at risk, so patch now April 13, 2021
  • BRATA Malware Poses as Android Security Scanners on Google Play Store April 13, 2021
  • 6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome April 13, 2021
  • ANZ Bank: We’ve been using machine learning for 20 years April 13, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates