Sunday, April 11, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Artificial Intelligence

Why AI Has Yet to Reshape Most Businesses

February 22, 2019
in Artificial Intelligence
Why AI Has Yet to Reshape Most Businesses
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: AI Trends


You might also like

You Can Bet On The Bring Your Own Algorithm (BYOA) Trend, Including For AI Autonomous Cars 

Retailers Adopting AI and Cloud Computing More Aggressively  

Elite Math Students Found by Study to Come From Same Countries Over Time 

DEREK BRAHNEY

The art of making perfumes and colognes hasn’t changed much since the 1880s, when synthetic ingredients began to be used. Expert fragrance creators tinker with combinations of chemicals in hopes of producing compelling new scents. So Achim Daub, an executive at one of the world’s biggest makers of fragrances, Symrise, wondered what would happen if he injected artificial intelligence into the process. Would a machine suggest appealing formulas that a human might not think to try?

Daub hired IBM to design a computer system that would pore over massive amounts of information—the formulas of existing fragrances, consumer data, regulatory information, on and on—and then suggest new formulations for particular markets. The system is called Philyra, after the Greek goddess of fragrance. Evocative name aside, it can’t smell a thing, so it can’t replace human perfumers. But it gives them a head start on creating something novel.

Daub is pleased with progress so far. Two fragrances aimed at young customers in Brazil are due to go on sale there in June. Only a few of the company’s 70 fragrance designers have been using the system, but Daub expects to eventually roll it out to all of them.

However, he’s careful to point out that getting this far took nearly two years—and it required investments that still will take a while to recoup. Philyra’s initial suggestions were horrible: it kept suggesting shampoo recipes. After all, it looked at sales data, and shampoo far outsells perfume and cologne. Getting it on track took a lot of training by Symrise’s perfumers. Plus, the company is still wrestling with costly IT upgrades that have been necessary to pump data into Philyra from disparate record-­keeping systems while keeping some of the information confidential from the perfumers themselves. “It’s kind of a steep learning curve,” Daub says. “We are nowhere near having AI firmly and completely established in our enterprise system.”

The perfume business is hardly the only one to adopt machine learning without seeing rapid change. Despite what you might hear about AI sweeping the world, people in a wide range of industries say the technology is tricky to deploy. It can be costly. And the initial payoff is often modest.

It’s one thing to see breakthroughs in artificial intelligence that can outplay grandmasters of Go, or even to have devices that turn on music at your command. It’s another thing to use AI to make more than incremental changes in businesses that aren’t inherently digital.

AI might eventually transform the economy—by making new products and new business models possible, by predicting things humans couldn’t have foreseen, and by relieving employees of drudgery. But that could take longer than hoped or feared, depending on where you sit. Most companies aren’t generating substantially more output from the hours their employees are putting in. Such productivity gains are largest at the biggest and richest companies, which can afford to spend heavily on the talent and technology infrastructure necessary to make AI work well.

This doesn’t necessarily mean that AI is overhyped. It’s just that when it comes to reshaping how business gets done, pattern-recognition algorithms are a small part of what matters. Far more important are organizational elements that ripple from the IT department all the way to the front lines of a business. Pretty much everyone has to be attuned to how AI works and where its blind spots are, especially the people who will be expected to trust its judgments. All this requires not just money but also patience, meticulousness, and other quintessentially human skills that too often are in short supply.

Looking for unicorns

Last September, a data scientist named Peter Skomoroch tweeted: “As a rule of thumb, you can expect the transition of your enterprise company to machine learning will be about 100x harder than your transition to mobile.” It had the ring of a joke, but Skomoroch wasn’t kidding. Several people told him they were relieved to hear that their companies weren’t alone in their struggles. “I think there’s a lot of pain out there—inflated expectations,” says Skomoroch, who is CEO of SkipFlag, a business that says it can turn a company’s internal communications into a knowledge base for employees. “AI and machine learning are seen as magic fairy dust.”

Among the biggest obstacles is getting disparate record-keeping systems to talk to each other. That’s a problem Richard Zane has encountered as the chief innovation officer at UC Health, a network of hospitals and medical clinics in Colorado, Wyoming, and Nebraska. It recently rolled out a conversational software agent called Livi, which uses natural-­language technology from a startup called Avaamo to assist patients who call UC Health or use the website. Livi directs them to renew their prescriptions, books and confirms their appointments, and shows them information about their conditions.

Zane is pleased that with Livi handling routine queries, UC Health’s staff can spend more time helping patients with complicated issues. But he acknowledges that this virtual assistant does little of what AI might eventually do in his organization. “It’s just the tip of the iceberg, or whatever the positive version of that is,” Zane says. It took a year and a half to deploy Livi, largely because of the IT headaches involved with linking the software to patient medical records, insurance-billing data, and other hospital systems.

Similar setups bedevil other industries, too. Some big retailers, for instance, save supply-chain records and consumer transactions in separate systems, neither of which is connected to broader data storehouses. If companies don’t stop and build connections between such systems, then machine learning will work on just some of their data. That explains why the most common uses of AI so far have involved business processes that are siloed but nonetheless have abundant data, such as computer security or fraud detection at banks.

Even if a company gets data flowing from many sources, it takes lots of experimentation and oversight to be sure that the information is accurate and meaningful. When Genpact, an IT services company, helps businesses launch what they consider AI projects, “10% of the work is AI,” says Sanjay Srivastava, the chief digital officer. “Ninety percent of the work is actually data extraction, cleansing, normalizing, wrangling.”

Those steps might look seamless for Google, Netflix, Amazon, or Facebook. But those companies exist to capture and use digital data. They’re also luxuriously staffed with PhDs in data science, computer science, and related fields. “That’s different than the rank and file of most enterprise companies,” Skomoroch says.

Indeed, smaller companies often require employees to delve into several technical domains, says Anna Drummond, a data scientist at Sanchez Oil and Gas, an energy company based in Houston. Sanchez recently began streaming and analyzing production data from wells in real time. It didn’t build the capability from scratch: it bought the software from a company called MapR. But Drummond and her colleagues still had to ensure that data from the field was in formats a computer could parse. Drummond’s team also got involved in designing the software that would feed information to engineers’ screens. People adept at all those things are “not easy to find,” she says. “It’s like unicorns, basically. That’s what’s slowing down AI or machine-learning adoption.”

Fluor, a huge engineering company, spent about four years working with IBM to develop an artificial-intelligence system to monitor massive construction projects that can cost billions of dollars and involve thousands of workers. The system inhales both numeric and natural-language data and alerts Fluor’s project managers about problems that might later cause delays or cost overruns.

Data scientists at IBM and Fluor didn’t need long to mock up algorithms the system would use, says Leslie Lindgren, Fluor’s vice president of information management. What took much more time was refining the technology with the close participation of Fluor employees who would use the system. In order for them to trust its judgments, they needed to have input into how it would work, and they had to carefully validate its results, Lindgren says.

To develop a system like this, “you have to bring your domain experts from the business—I mean your best people,” she says. “That means you have to pull them off other things.” Using top people was essential, she adds, because building the AI engine was “too important, too long, and too expensive” for them to do otherwise.

Read the source article at MIT Technology Review.

Credit: AI Trends By: John Desmond

Previous Post

Machine Learning Targets the Opioid Crisis

Next Post

How to Stop Facebook App From Tracking Your Location In the Background

Related Posts

You Can Bet On The Bring Your Own Algorithm (BYOA) Trend, Including For AI Autonomous Cars 
Artificial Intelligence

You Can Bet On The Bring Your Own Algorithm (BYOA) Trend, Including For AI Autonomous Cars 

April 9, 2021
Retailers Adopting AI and Cloud Computing More Aggressively  
Artificial Intelligence

Retailers Adopting AI and Cloud Computing More Aggressively  

April 9, 2021
Elite Math Students Found by Study to Come From Same Countries Over Time 
Artificial Intelligence

Elite Math Students Found by Study to Come From Same Countries Over Time 

April 9, 2021
Meteorologists Aim to Use AI To Get an Edge on Natural Hazards and Disasters 
Artificial Intelligence

Meteorologists Aim to Use AI To Get an Edge on Natural Hazards and Disasters 

April 9, 2021
Autonomous Vehicle Safety Standards Evolving in US and Worldwide 
Artificial Intelligence

Autonomous Vehicle Safety Standards Evolving in US and Worldwide 

April 9, 2021
Next Post
How to Stop Facebook App From Tracking Your Location In the Background

How to Stop Facebook App From Tracking Your Location In the Background

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Job Scope For MSBI In 2021
Data Science

Job Scope For MSBI In 2021

April 11, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning method accurately predicts battery state of health

April 11, 2021
Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success
Data Science

Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success

April 11, 2021
Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison
Data Science

Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison

April 10, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Job Scope For MSBI In 2021 April 11, 2021
  • New machine learning method accurately predicts battery state of health April 11, 2021
  • Can a Machine Learning Model Predict T2D? April 11, 2021
  • Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success April 11, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates