Monday, March 8, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

What Is It Really Good For?

May 24, 2020
in Machine Learning
Understanding The Recognition Pattern Of AI
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

AI artificial intelligence concept Central Computer Processors CPU concept, 3d rendering, Circuit … [+] board, Technology background, Motherboard digital chip, Tech science background, machine learning

You might also like

Dataiku named as Gartner Leader for Data Science and Machine Learning

Podcast: Non-Binding Guidance: FDA Regulatory Developments In AI And Machine Learning – Food, Drugs, Healthcare, Life Sciences

Here’s an adorable factory game about machine learning and cats


Getty

Machine learning is definitely a confusing term. Is it AI or something different?

Well, its actually a subset of AI (which, by the way, is a massive category). “Machine learning is a method of analyzing data using an analytical model that is built automatically, or ‘learned’, from training data,” said Rick Negrin, who is the VP of Product Development at MemSQL. “The idea is that the model gets better as you feed it more data points.”

There are two key steps with machine learning. First, you need to collect and train the data, which can be a long and tough process. Then, you will operationalize the machine learning, such as by using it to help provide insights or as part of a product.  There are a myriad of tools to help with the process, such as open source platforms like TensorFlow and commercial systems, such as DataRobot. 

“Successful machine learning is only as good as the data available, which is why it needs new, updated data to provide the most accurate outputs or predictions for any given need,” said Panagiotis Angelopoulos, who is the Chief Data Officer at Persado. “And unlike what any one person can analyze, machine learning can take vast amounts of data over time and make predictions to improve the customer experience and provide real value to the end-user.”

Sometimes the models are so intricate that they are nearly impossible to understand. The lack of transparency can make it so that certain industries, like healthcare and banking, may not be able to use machine learning models. Because of this, more research is being focused on the explainability of models.

Another challenge with machine learning is the need to form an experienced team.  “To build this team in-house, you will have to hire more than just data scientists,” said Ji Li, who is the director of data science at CLARA. “Full deployment of a new solution requires product managers, software engineers, data engineers, operational experts to develop process and operational workflows, staff to integrate data models into operations, people to manage onboarding and training of the employees who will ultimately use the solution, and staff who can quantify value generation.”

In other words, for many organizations, the best option with machine learning may be to buy an off-the-shelf solution. The good news is that there are many on the market—and they are generally affordable. 

But regardless of what path you take, there needs to be a clear-cut business case for machine learning. It should not be used just because it is trendy. There also needs to be sufficient change management within the organization.  “One of the greatest challenges in implementing machine learning and other data science initiatives is navigating institutional change—getting a buy-in, dealing with new processes, the changing job duties, and more,” said Ingo Mierswa, who is the founder and president of RapidMiner. 

Then what are the use cases for machine learning? According to Alyssa Simpson Rochwerger, who is the VP of AI and the Data Evangelist at Appen: “Machine learning can solve lots of different types of problems. But it’s particularly well suited to decisions that require very simple and repetitive tasks at large scale. For example, the US Postal Service has been successfully using machine learning systems to sort the mail for decades. The task was simple: read the address on the mail (sense) and then understand the zip code (perceive) and then sort into different buckets (decide). The US Postal Service processes almost two hundred million pieces of mail per day—so sorting this by hand wouldn’t work.”

In fact, the examples are seemingly endless for machine learning. Here are just a few:

  •  Netflix movie recommendations (note that the visuals for the thumbnails are also based on machine learning).
  • Fraud detection
  • Spam detection
  • Logistics for ride-sharing operators like Uber and Lyft
  • Models to predict churn

“Machine learning is a tool and like most tools, it works best when used properly,” said Matei Zaharia, who is the chief technologist and co-founder of Databricks. “Machine learning can take something as simple as some images and some annotations or just drawings on those images and create a solution that can be automated efficiently and at scale. However, we are not in a technological state where a machine learning model can just work on anything that is thrown at it—that is, not without some kind of external guidance. A machine learns, a human teaches.”

Tom (@ttaulli) is an advisor to startups and the author of Artificial Intelligence Basics: A Non-Technical Introduction and The Robotic Process Automation Handbook: A Guide to Implementing RPA Systems. He also has developed various online courses, such as for the Python programming language.


Credit: Google News

Previous Post

Check Point released an open-source fix for common Linux memory corruption security hole

Next Post

Hilary Duff Is Being Accused Of Child Molestation – Enough Is Enough

Related Posts

Dataiku named as Gartner Leader for Data Science and Machine Learning
Machine Learning

Dataiku named as Gartner Leader for Data Science and Machine Learning

March 8, 2021
Machine Learning Patentability In 2019: 5 Cases Analyzed And Lessons Learned Part 4 – Intellectual Property
Machine Learning

Podcast: Non-Binding Guidance: FDA Regulatory Developments In AI And Machine Learning – Food, Drugs, Healthcare, Life Sciences

March 8, 2021
Here’s an adorable factory game about machine learning and cats
Machine Learning

Here’s an adorable factory game about machine learning and cats

March 8, 2021
How Machine Learning Is Changing Influencer Marketing
Machine Learning

How Machine Learning Is Changing Influencer Marketing

March 8, 2021
Video Highlights: Deep Learning for Probabilistic Time Series Forecasting
Machine Learning

Video Highlights: Deep Learning for Probabilistic Time Series Forecasting

March 7, 2021
Next Post
Hilary Duff Is Being Accused Of Child Molestation – Enough Is Enough

Hilary Duff Is Being Accused Of Child Molestation – Enough Is Enough

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Top 6 Regression Techniques a Data Science Specialist Needs to Know
Data Science

Top 6 Regression Techniques a Data Science Specialist Needs to Know

March 8, 2021
Dataiku named as Gartner Leader for Data Science and Machine Learning
Machine Learning

Dataiku named as Gartner Leader for Data Science and Machine Learning

March 8, 2021
Bill establishing cyber abuse takedown scheme for adults enters Parliament
Internet Security

eSafety defends detail of Online Safety Bill as the ‘sausage that’s being made’

March 8, 2021
An Easy Way to Solve Complex Optimization Problems in Machine Learning
Data Science

An Easy Way to Solve Complex Optimization Problems in Machine Learning

March 8, 2021
Machine Learning Patentability In 2019: 5 Cases Analyzed And Lessons Learned Part 4 – Intellectual Property
Machine Learning

Podcast: Non-Binding Guidance: FDA Regulatory Developments In AI And Machine Learning – Food, Drugs, Healthcare, Life Sciences

March 8, 2021
Here’s an adorable factory game about machine learning and cats
Machine Learning

Here’s an adorable factory game about machine learning and cats

March 8, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Top 6 Regression Techniques a Data Science Specialist Needs to Know March 8, 2021
  • Dataiku named as Gartner Leader for Data Science and Machine Learning March 8, 2021
  • eSafety defends detail of Online Safety Bill as the ‘sausage that’s being made’ March 8, 2021
  • An Easy Way to Solve Complex Optimization Problems in Machine Learning March 8, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates