Monday, March 1, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

Technical Periods of COVID-19 Fatality Data and the Relevance of Asymptotic Baselines

April 17, 2020
in Data Science
Technical Periods of COVID-19 Fatality Data and the Relevance of Asymptotic Baselines
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

While I was laid off due to the new Coronavirus, I created a computer application called Little Blue Pearl (LBP) – named after our planet. Although I was recalled about 1.5 weeks later, I find myself continuing to follow the fatality numbers for different countries. I guess it is a bit like bird watching in a certain sense. It is not that I am focused on the number of deaths per se but rather the progress that different countries are making to overcome the deadly virus. In an earlier piece, I discussed using the Exponent-1 (exp-1 on the y-axis) to study fatalities: log(today) / log(yesterday) – 1. Today I will be dividing the technical data into three distinct periods: 1) initial engagement period; 2) mitigative transition period; and 3) asymptotic period. I haven’t developed exact criteria for these periods; but I offer my assessment of the graphics using the exp-1 for Italy as shown above.

You might also like

9 Tips to Effectively Manage and Analyze Big Data in eLearning

The Future of AI in Insurance

AI And Automation In HR: The Changing Scenario Of The Business

The initial engagement period is highly volatile perhaps mostly due to the base: even a small increase in fatalities results in a large increase in the exp-1. It is during this time when the efforts of doctors, nurses, paramedics, and others in the health care profession are difficult to detect on a systemic or structural level. During the mitigative transition period, the rise in fatalities is clearly being constrained or limited by forces or systems in opposition. This opposition might not be a coherent system necessarily; but it is probably structural. For example, the low density of a geographic area can impair the pace of infection. The asymptotic period reflects the emergence of a relatively persistent and stable baseline. In other words, this is about as good as it gets. In order to achieve better outcomes – if the virus fails to give up all on its own – it might be necessary to redesign, reconfigure, or re-engineer systems and structures. In the next image, I zoom into the last 10 days for Italy to show the apparent lower boundary characteristic of the asymptotic period.

A structural lower boundary of around 0.003 means the daily exponential increase is 1.003; this is quite low mathematically but nonetheless undesirable in terms of the number of deaths. This boundary is useful in that it becomes possible to reasonably assess the effectiveness of specific changes intended to further ameliorate mortality. The baseline can also be used as a point of comparison with other countries that have also reached their asymptotic period. Sweden is an interesting country in that there has been a deliberate attempt by the government to allow citizens to carry on as usual despite the virus. Check out their pattern.

Perhaps many would suggest that Sweden still hasn’t reached its asymptotic period in light of the large swings in its exp-1. At the same time, because Sweden simply doesn’t have many fatalities, it is important not to necessarily expect a smooth asymptotic pattern. Here we have a situation where there are fewer structural constraints on the virus compared to many countries – although of course their medical system remains available to care for patients who feel they need it. Large fluctuations might be normal given the absence of control measures. Despite its policies, Sweden like many countries is still making progress – yes, even as it does nothing.

A country or region that is in its asymptotic period is more convincing for obtaining accurate estimates than if it is in a less mature period. Nonetheless, it is better to provide an estimate based on some data than to provide no guidance at all – cautioning everyone that the country has not reached a stable point on which to make reliable projections. To determine if the asymptotic period has been reached, to me one can simply use the standard deviation of the exp-1 as shown on the next table. This reading should be distinguished from the guidance: e.g. there is guidance that is more or less convincing depending on the level of deviation to the exp-1. On the table, a country shows CLEAR if either of the following is true: 1) there are fewer than 1,000 more deaths expected; and 2) 95 percent or more of the expected deaths have already occurred. The fact that CLEAR appears as the guidance does not mean that the country is genuinely clear; the stability of the asymptotic pattern has to be considered.

Generally speaking, I only update the data periodically – more often for countries that show lots of action or which are interesting case examples. I want to mention, for the purpose of determining the resolution date for countries, the above table uses the last 15 days of technical data based only on the number of fatalities. I suspect that many readers might dismiss the table outright since the expected number of deaths seems curiously much lower than some estimates from health care professionals. Well, I don’t take into account secondary and tertiary breakouts. Nor is LBP specifically designed to project fatalities. In an earlier blog, I mentioned that LBP attempts to connect or match day-to-day qualitative event data to the quantitative metrics. Using the system to evaluate quantitative patterns is a bit of bonus feature. Still, I hope readers still accept my argument that there are distinct periods; and the base for the asymptotic period in particular can be used ascertain the effectiveness of mitigation regimes.


Credit: Data Science Central By: Don Philip Faithful

Previous Post

AutoML-Zero: New AI improves itself through evolution

Next Post

Google to Gmail users: Coronavirus phishing is targeting you. This is how we hit back

Related Posts

9 Tips to Effectively Manage and Analyze Big Data in eLearning
Data Science

9 Tips to Effectively Manage and Analyze Big Data in eLearning

March 1, 2021
The Future of AI in Insurance
Data Science

The Future of AI in Insurance

March 1, 2021
AI And Automation In HR: The Changing Scenario Of The Business
Data Science

AI And Automation In HR: The Changing Scenario Of The Business

February 28, 2021
Python vs R! Which one should you choose for data Science
Data Science

Python vs R! Which one should you choose for data Science

February 28, 2021
The Time-Series Ecosystem – Data Science Central
Data Science

The Time-Series Ecosystem – Data Science Central

February 28, 2021
Next Post
Google to Gmail users: Coronavirus phishing is targeting you. This is how we hit back

Google to Gmail users: Coronavirus phishing is targeting you. This is how we hit back

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

9 Tips to Effectively Manage and Analyze Big Data in eLearning
Data Science

9 Tips to Effectively Manage and Analyze Big Data in eLearning

March 1, 2021
Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ
Machine Learning

Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ

March 1, 2021
The Future of AI in Insurance
Data Science

The Future of AI in Insurance

March 1, 2021
Machine Learning as a Service (MLaaS) Market Analysis Technological Innovation by Leading Industry Experts and Forecast to 2028 – The Daily Chronicle
Machine Learning

Machine Learning as a Service (MLaaS) Market Global Sales, Revenue, Price and Gross Margin Forecast To 2028 – The Bisouv Network

March 1, 2021
AI And Automation In HR: The Changing Scenario Of The Business
Data Science

AI And Automation In HR: The Changing Scenario Of The Business

February 28, 2021
Machine learning could aid mental health diagnoses: Study
Machine Learning

Machine learning could aid mental health diagnoses: Study

February 28, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • 9 Tips to Effectively Manage and Analyze Big Data in eLearning March 1, 2021
  • Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ March 1, 2021
  • The Future of AI in Insurance March 1, 2021
  • Machine Learning as a Service (MLaaS) Market Global Sales, Revenue, Price and Gross Margin Forecast To 2028 – The Bisouv Network March 1, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates