## A practical example of Social Network Analysis of Game of Thrones using NetworkX

This is a quick tutorial about Social Network Analysis using Networkx taking as examples the characters of Game of Thrones. We got the data from the github merging all the 5 books and ignoring the “weight” attribute.

With Network Science we can approach many problems. Almost everything could be translated to a “Network” with Nodes and Edges. For example, the Google Maps is a network where the Nodes could be the “Places” and Edges can be the “Streets”. Of course, the most famous network is the **Facebook **which is an “undirected” graph and the **Instagram **which is “directed” since we have the people that we follow and our followers. The nodes are the “users” and the “edges” are the connections between them. Notice that both “nodes” and “edges” can have attributes. For example, node attributes in Facebook can be the “Gender”, “Location”, “Age” etc and edge attribute can be “date of the last conversation between two nodes”, ‘number of likes”, “date they connected” etc.

Notice that with Network Analysis we can apply recommendation systems but this is out of the scope of this tutorial.

We will use the `NetworkX`

python library on “Game of Thrones” data. The first exercise is to load the data and to get the number of nodes of the network which is **796** and the number of edges which is **2823**. Thus, we are dealing with 796 characters of Game of Thrones.

importnetworkx as nximportnxviz as nvimportpandas as pdimportmatplotlib.pyplot as plt%matplotlib inline# read all the 5 csv files# keep only the distinct pairs of source target since we will ignore the books and the weightsall_books=["book1.csv", "book2.csv", "book3.csv", "book4.csv", "book5.csv"]li=[]forfinall_books:

tmp=pd.read_csv(f)

li.append(tmp)df=pd.concat(li, axis=0, ignore_index=True)df=df[['Source', 'Target']]df.drop_duplicates(subset=['Source', 'Target'], inplace=True)# create the networkx objectG=nx.from_pandas_edgelist(df, source='Source', target='Target')# How to get the number of nodesprint(len(G.nodes()))# How to get the number of edgesprint(len(G.edges()))

We will return some of the main Network properties such as “ **average shortest path length**”, “ **diameter**”, “ **density**”, “ **average clustering**” and “ **transitivity** “. We commend out the answers of each property.

As we will see the “ **diameter** “ of our graph is 9, which is the longest of all the calculated shortest paths in a network. It is the shortest distance between the two most distant nodes in the network. In other words, once the shortest path length from every node to all other nodes is calculated, the diameter is the longest of all the calculated path lengths. The diameter is representative of the linear size of a network.

1. Microsoft Azure Machine Learning x Udacity — Lesson 4 Notes

2. Fundamentals of AI, ML and Deep Learning for Product Managers

3. Roadmap to Data Science

4. Work on Artificial Intelligence Projects

Also the “ **average shortest path length** “ is 3.41 which is calculated by finding the shortest path between all pairs of nodes, and taking the average over all paths of the length thereof. This shows us, on average, the number of steps it takes to get from one member of the network to another

nx.average_shortest_path_length(G)

# 3.416225783003066nx.diameter(G)

# 9nx.density(G)

# 0.008921968332227173nx.average_clustering(G)# 0.4858622073350485nx.transitivity(G)# 0.2090366938564282

We are going to represent some Centrality measures. We give the definition of the most common:

**Degree centrality**of a node in a network is the number of links (vertices) incident on the node.**Closeness centrality**determines how “close” a node is to other nodes in a network by measuring the sum of the shortest distances (geodesic paths) between that node and all other nodes in the network.**Betweenness centrality**determines the relative importance of a node by measuring the amount of traffic flowing through that node to other nodes in the network. This is done by measuring the fraction of paths connecting all pairs of nodes and containing the node of interest. Group Betweenness centrality measures the amount of traffic flowing through a group of nodes.

We will return also the famous PageRank although it is most common in “directed” graphs.

Based on these centrality measures, we will define the **5 more important characters in Game of Thrones**.

# Compute the betweenness centrality of G: bet_cen

bet_cen=nx.betweenness_centrality(G)# Compute the degree centrality of G: deg_cen

deg_cen=nx.degree_centrality(G)# Compute the page rank of G: page_rank

page_rank=nx.pagerank(G)# Compute the closeness centrality of G: clos_cen

clos_cen=nx.closeness_centrality(G)sorted(bet_cen.items(), key=lambda x:x[1], reverse=True)[0:5]

And we get:

`[('Jon-Snow', 0.19211961968354493),`

('Tyrion-Lannister', 0.16219109611159815),

('Daenerys-Targaryen', 0.11841801916269228),

('Theon-Greyjoy', 0.11128331813470259),

('Stannis-Baratheon', 0.11013955266679568)]

Also:

`sorted(deg_cen.items(), key=lambda x:x[1], reverse=True)[0:5]`

And we get:

`[('Tyrion-Lannister', 0.15345911949685534),`

('Jon-Snow', 0.14339622641509434),

('Jaime-Lannister', 0.1270440251572327),

('Cersei-Lannister', 0.1220125786163522),

('Stannis-Baratheon', 0.11194968553459118)]

Also:

`sorted(page_rank.items(), key=lambda x:x[1], reverse=True)[0:5]`

And we get:

`[('Jon-Snow', 0.01899956924856684),`

('Tyrion-Lannister', 0.018341232619311032),

('Jaime-Lannister', 0.015437447356269757),

('Stannis-Baratheon', 0.013648810781186758),

('Arya-Stark', 0.013432050115231265)]

Finally,

`sorted(clos_cen.items(), key`**=lambda** x:x[1], reverse**=**True)[0:5]

And we get:

`[('Tyrion-Lannister', 0.4763331336129419),`

('Robert-Baratheon', 0.4592720970537262),

('Eddard-Stark', 0.455848623853211),

('Cersei-Lannister', 0.45454545454545453),

('Jaime-Lannister', 0.4519613416714042)]

As we can see, for different Centrality measures, we get different results, for instance, “Jon-Snow” has the highest “ **Betweenness**” and “Tyrion-Lannister” the highest “ **Closeness** “ centrality.

We will represent how we can get all the Cliques using NetworkX and we will show the largest one.

`# get all cliques `

all = nx.find_cliques(G)

# get the largest clique

largest_clique = sorted(nx.find_cliques(G), key=lambda x:len(x))[-1] largest_clique

And we get:

`['Tyrion-Lannister', 'Cersei-Lannister', 'Joffrey-Baratheon', 'Sansa-Stark', 'Jaime-Lannister', 'Robert-Baratheon', 'Eddard-Stark', 'Petyr-Baelish', 'Renly-Baratheon', 'Varys', 'Stannis-Baratheon', 'Tywin-Lannister', 'Catelyn-Stark', 'Robb-Stark']`

You noticed that Facebook suggests your potential friends. There are many algorithms, but one of these is based on the “ Open Triangles” which is a concept in social network theory. Triadic closure is the property among three nodes A, B, and C, such that if a strong tie exists between A-B and A-C, there is a weak or strong tie between B-C. This property is too extreme to hold true across very large, complex networks, but it is a useful simplification of reality that can be used to understand and predict networks.

Let’s try to make the top ten suggestions based on the “Open Triangles”

# Import necessary modulesfromitertoolsimportcombinationsfromcollectionsimportdefaultdict# Initialize the defaultdict: recommendedrecommended=defaultdict(int)# Iterate over all the nodes in Gforn, dinG.nodes(data=True):# Iterate over all possible triangle relationship combinationsforn1, n2incombinations(G.neighbors(n), 2):

# Check whether n1 and n2 do not have an edgeifnotG.has_edge(n1, n2):

# Increment recommended

recommended[(n1, n2)]+=1# Identify the top 10 pairs of usersall_counts=sorted(recommended.values())top10_pairs=[pairforpair, countinrecommended.items()ifcount > all_counts[-10]]print(top10_pairs)

And we get:

`[('Catelyn-Stark', 'Tommen-Baratheon'),`

('Eddard-Stark', 'Brienne-of-Tarth'),

('Petyr-Baelish', 'Brienne-of-Tarth'),

('Rodrik-Cassel', 'Stannis-Baratheon'),

('Arya-Stark', 'Brienne-of-Tarth'),

('Arya-Stark', 'Stannis-Baratheon'),

('Bran-Stark', 'Jaime-Lannister'),

('Bran-Stark', 'Stannis-Baratheon')]

So for example it suggests connecting **‘Catelyn-Stark’** with **‘Tommen-Baratheon’** etc!