Thursday, February 25, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Significance of Agility for Data Science and DataOps

June 28, 2020
in Machine Learning
Significance of Agility for Data Science and DataOps
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Today as the competition is at surge among tech organizations, agile principles and priorities are employed for greater productivity. Most of them could be leveraged for data science (DS) projects. Moreover, data scientists do not know how to schedule the project because it is impossible to determine a specific timeline for the type of “research” and exploratory work. Most data science projects require trial and error by going down different paths and trying different techniques. They do not have an element of certainty in the output, so Agile is most suitable to be adopted to direct the workflow.

You might also like

Even Small Companies Use AI, Machine Learning

Zorroa Launches Boon AI; No-code Machine Learning for Media-driven Organizations

Way of using machine learning to aid mental health diagnoses developed

On the other hand, DataOps in itself is an agile methodology for developing and deploying data-intensive applications, including data science and machine learning. A DataOps workflow supports cross-functional collaboration and fast time to value. With an emphasis on both people and process, as well as the empowering platform technologies that underlie it, a DataOps process allows each collaborating group to increase productivity by focusing on their core competencies while enabling an agile, iterative workflow.

Moreover, applying agile methodologies to analytics and machine learning lifecycle is a significant opportunity, but it requires redefining some terms and concepts. For example:

  • Instead of an agile product owner, an agile data science team may be led by an analytics owner who is responsible for driving business outcomes from the insights delivered
  • Data science teams sometimes complete new user stories with improvements to dashboards and other tools, but more broadly, they deliver actionable insights, improved data quality, Dataops automation, enhanced data governance, and other deliverables. The analytics owner and team should capture the underlying requirements for all these deliverables in the backlog
  • Agile data science teams should be multidisciplinary and may include Dataops engineers, data modelers, database developers, data governance specialists, data scientists, citizen data scientists, data stewards, statisticians, and machine learning experts. The team makeup depends on the scope of work and the complexity of data and analytics required

Agility is going to be adopted by more data science and DataOps project teams soon. Many data scientists have reported that agility makes them more productive. This is not because the data scientists have become more skillful, but because agility can help them optimize their projects. Instead of spending time on models that are unlikely to reveal any productive results, it is better to spend that time for other result-driven purposes.

Being “agile” (flexible) means you need to adopt a dynamic approach in planning and be adaptable to the changing needs of the new situation when it arises. An agile environment appeals to quick action, fail quickly, evaluate and learn, then try again using a different approach or an improved method. It works great in dynamic environments where there is a potential for changing or evolving requirements.

Share This Article


Do the sharing thingy

About Author


More info about author


Smriti Srivastava




Smriti is a Content Analyst at Analytics Insight. She writes Tech/Business articles for Analytics Insight. Her creative work can be confirmed @analyticsinsight.net. She adores crushing over books, crafts, creative works and people, movies and music from eternity!!

More by Smriti Srivastava

Credit: Google News

Previous Post

Telehealth data breaches to worsen as adoption skyrockets

Next Post

Microsoft Edge is stealing Chrome users' data? I asked Microsoft if it's true

Related Posts

Even Small Companies Use AI, Machine Learning
Machine Learning

Even Small Companies Use AI, Machine Learning

February 25, 2021
Zorroa Launches Boon AI; No-code Machine Learning for Media-driven Organizations
Machine Learning

Zorroa Launches Boon AI; No-code Machine Learning for Media-driven Organizations

February 24, 2021
Machine Learning

Way of using machine learning to aid mental health diagnoses developed

February 24, 2021
Machine Learning Market Size 2021
Machine Learning

Machine Learning Market Size 2021

February 24, 2021
Market Live: Global Machine Learning Big Data Analytics Education Market Can Deliver up to High CAGR over the next Few Years | COVID19 Impact Analysis
Machine Learning

Global Machine Learning Market 2021 Size, Industry Growth and Forecast till 2025 | COVID19 Impact Analysis

February 24, 2021
Next Post
A professor says Edge is the worst for privacy. Microsoft isn’t happy

Microsoft Edge is stealing Chrome users' data? I asked Microsoft if it's true

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Google funds Linux kernel developers to work exclusively on security
Internet Security

Google funds Linux kernel developers to work exclusively on security

February 25, 2021
Online Trackers Increasingly Switching to Invasive CNAME Cloaking Technique
Internet Privacy

Online Trackers Increasingly Switching to Invasive CNAME Cloaking Technique

February 25, 2021
Off-chain reporting: Toward a new general purpose secure compute framework by Chainlink
Big Data

Off-chain reporting: Toward a new general purpose secure compute framework by Chainlink

February 25, 2021
Even Small Companies Use AI, Machine Learning
Machine Learning

Even Small Companies Use AI, Machine Learning

February 25, 2021
How Is Machine Learning Revolutionizing Supply Chain Management | by Gina Shaw | Feb, 2021
Neural Networks

How Is Machine Learning Revolutionizing Supply Chain Management | by Gina Shaw | Feb, 2021

February 25, 2021
Reaching customers at scale without losing their trust: Wednesday’s daily brief
Digital Marketing

Reaching customers at scale without losing their trust: Wednesday’s daily brief

February 25, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Google funds Linux kernel developers to work exclusively on security February 25, 2021
  • Online Trackers Increasingly Switching to Invasive CNAME Cloaking Technique February 25, 2021
  • Off-chain reporting: Toward a new general purpose secure compute framework by Chainlink February 25, 2021
  • Even Small Companies Use AI, Machine Learning February 25, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates