Tuesday, April 13, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Neural Networks

Responsible AI Practices Your Organizations Should Follow For Better Trust | by Gina Shaw | Nov, 2020

December 5, 2020
in Neural Networks
Responsible AI Practices Your Organizations Should Follow For Better Trust | by Gina Shaw | Nov, 2020
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

AI’s transformative potential has been the prime mover for its widespread adoption among organizations across the globe and continues to be the utmost priority for business leaders. PwC’s research estimates that AI could contribute $15.7 trillion to the global economy by 2030, as a result of productivity gains and increased consumer demand driven by AI-enhanced products and services.

While artificial intelligence (AI) is quickly gaining ground as a powerful tool to reduce costs, automate workflows and improve revenues, deploying AI requires meticulous management to prevent unintentional ramifications. Beyond the compliance to the laws, CEOs bear a great onus to ensure a responsible and ethical use of AI systems. With the advent of powerful AI, there has been a great deal of concern and skepticism regarding how AI systems can be aligned with human ethics and integrated with softwares, when moral codes vary with culture.

You might also like

Learning Not To Fear Machine Learning | by Dimitry Belozersky | Apr, 2021

WOMEN IN A.I. ~ Future is Female

A Primer of 29 Interactions for AI

Artificial Intelligence Jobs

Creating responsible AI is imperative to organizations and instilling responsibility in a technology requires following criteria to be fulfilled —

  • It should comply with all the regulations and operate on ethical grounds
  • AI needs to be reinforced by end-to-end governance
  • It should be supported by performance pillars that address subjects like bias and fairness, interpretability and explainability, and robustness and security.

Value statements often lack proper definitions of concepts like bias and fairness in the context of AI. While it’s possible to design AI to be fair and in line with an organisation’s corporate code of ethics, leaders should lead their organizations towards establishing metrics that align their AI initiatives with company’s values and goals. CEOs should comprehensively lay down company’s goals and values in the context of AI and encourage collaboration across the organization in defining AI fairness . Some examples of metrics include:

  • Disparate Impact: The ratio in the probability of favorable outcomes between the unprivileged and privileged groups.
  • Equal Opportunity Difference: The ratio of true positive rates between the unprivileged and privileged groups
  • Statistical Parity Difference: The difference of the rate of favourable outcomes received by unprivileged group and the privileged group
  • Average Odds Difference: The average difference of false positives and true positives between unprivileged group and the privileged group
  • Theil Index: The inequality of benefit allocation for individuals

Building Responsible AI practices in the organization requires the leadership to build proper communication channels, cultivate a culture of responsibility, and build internal governance processes that match with the needed regulations and industry’s best practices.

1. How to automatically deskew (straighten) a text image using OpenCV

2. Explanation of YOLO V4 a one stage detector

3. 5 Best Artificial Intelligence Online Courses for Beginners in 2020

4. A Non Mathematical guide to the mathematics behind Machine Learning

End-to-end enterprise governance is extremely critical for Responsible AI. Organizations should be able to answer the following questions w.r.t AI initiatives:

  1. Who takes accountability and responsibility
  2. How can we align AI with our business strategy
  3. Which processes can be optimized and improved
  4. What are the essential controls to monitor performance and identify problems

AI development isn’t devoid of trade-offs, in fact, while developing AI models there is often a perceived trade-off between the accuracy of an algorithm and the transparency of its decision making i.e, how explainable its predictions are for stakeholders. A high accuracy AI model can lead to the creation of “black box” algorithms, which makes it difficult to rationalize the decision making process of the AI system.

Likewise, trade-off exists while training AI. As AI models get more accurate with more data, gathering a large volume of data itself can increase privacy concerns. Formulating thorough guidelines and hierarchy of values is vital to shape responsible AI practices during model-development.

Resilience, security and safety are essential elements of AI for it to be effective and reliable.

  • Resilience: Next-generation AI systems are going to be increasingly “self-aware,” with a capability to evaluate unethical decisions and correct faults.
  • Security: AI systems and development processes should be protected against potential fatal incidents like AI data theft, breaches in security that lead to systems being compromised or “hijacked”.
  • Safety: Ensure AI systems are safe to use for the people whose are either directly impacted by them or will be potentially affected by AI-enabled decisions. Safe AI is critical in areas related to healthcare, connected workforce, manufacturing applications etc.

AI needs to be closely monitored with human supervision and its performance should be audited against key metrics like accountability, bias, and cybersecurity. A diligent evaluation is needed as biases can be subtle and hard to discern and a feedback loop needs to be devised to effectively govern AI and fine tune biases.

A continuous monitoring of AI will ensure that the models will recreate an accurate real-world performance and take user feedback into account. While issues are bound to occur, it is necessary to adopt a strategy that comprises short-term simple fixes and longer-term learned solutions to address the issues. Prior to deploying an AI model, it is essential to analyze the differences and understand how the update will affect the overall system quality and user experience.

Explainable AI (XAI) is defined as systems with the ability to explain their rationale for decisions, characterize the strengths and weaknesses of their decision-making process, and convey an understanding of how they will behave in the future. While it’s desirable to have complex models that perform exceedingly well, it would be erroneous to assume that the benefits derived from the model outweigh its lack of explainability.

AI’s Explainability is a major factor to ensure compliance with regulations, manage public expectations, establish trust and accelerate adoption. And it offers domain experts, frontline workers, and data scientists a means to eliminate potential biases well before models are deployed. To ensure that model outputs are precisely explainable, data-science teams should clearly establish the types of models that are used.

Machine Learning models essentially need large sets of data to train and work accurately. A caveat to this process is that a lot of data can be sensitive. It is essential to address the potential privacy implications in using such data. This demands enterprises to adhere to legal and regulatory requirements, be sensitive to social norms and individual expectations, and finally have adequate transparency and control of their data.

A Responsible AI framework enables organizations to build trust with both employees and customers. In doing so, employees will rest their faith in the insights delivered by AI, willingly use it in their operations and ideate new ways to leverage AI in creating greater value.

Building trust with customers, opens the floodgates to use consumer data that can be used to continually improve AI and consumers will be more willing to use your AI-infused products because of the trust in the product and the organization. This also improves brand reputation, allows organizations to innovate, compete and most importantly, enables society to benefit from the power of AI than be paranoid about the technology. via Acuvate.com

Credit: BecomingHuman By: Gina Shaw

Previous Post

Where Google is placing its bets in 2021

Next Post

Machine Learning Based on ECG, Clinical Data Predicts Coronary Calcium

Related Posts

Learning Not To Fear Machine Learning | by Dimitry Belozersky | Apr, 2021
Neural Networks

Learning Not To Fear Machine Learning | by Dimitry Belozersky | Apr, 2021

April 13, 2021
WOMEN IN A.I. ~ Future is Female
Neural Networks

WOMEN IN A.I. ~ Future is Female

April 12, 2021
A Primer of 29 Interactions for AI
Neural Networks

A Primer of 29 Interactions for AI

April 10, 2021
Univariate Linear Regression: Explained with Examples | by WeiQin Chuah | Apr, 2021
Neural Networks

Univariate Linear Regression: Explained with Examples | by WeiQin Chuah | Apr, 2021

April 10, 2021
Disentangling AI, Machine Learning, and Deep Learning | by James Montantes | Apr, 2021
Neural Networks

Disentangling AI, Machine Learning, and Deep Learning | by James Montantes | Apr, 2021

April 9, 2021
Next Post
Machine Learning Based on ECG, Clinical Data Predicts Coronary Calcium

Machine Learning Based on ECG, Clinical Data Predicts Coronary Calcium

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Bug bounties: More hackers are spotting vulnerabilities across web, mobile and IoT
Internet Security

Critical security alert: If you haven’t patched this old VPN vulnerability, assume your network is compromised

April 13, 2021
Epoch and Map of the Energy Transition through the Consensus Validator
Data Science

Epoch and Map of the Energy Transition through the Consensus Validator

April 13, 2021
Bitcoin mining in China could threaten climate policies, new study shows
Blockchain

Bitcoin mining in China could threaten climate policies, new study shows

April 13, 2021
Artificial Intelligence Research at Duke
Machine Learning

Artificial Intelligence Research at Duke

April 13, 2021
Learning Not To Fear Machine Learning | by Dimitry Belozersky | Apr, 2021
Neural Networks

Learning Not To Fear Machine Learning | by Dimitry Belozersky | Apr, 2021

April 13, 2021
Billions of smartphone owners will soon be authorising payments using facial recognition
Internet Security

Billions of smartphone owners will soon be authorising payments using facial recognition

April 13, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Critical security alert: If you haven’t patched this old VPN vulnerability, assume your network is compromised April 13, 2021
  • Epoch and Map of the Energy Transition through the Consensus Validator April 13, 2021
  • Bitcoin mining in China could threaten climate policies, new study shows April 13, 2021
  • Artificial Intelligence Research at Duke April 13, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates