Friday, February 26, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Research fellowship – Machine learning methods for improved geothermal energy assessments | Think GeoEnergy

September 5, 2020
in Machine Learning
Research fellowship – Machine learning methods for improved geothermal energy assessments | Think GeoEnergy
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Flow tests at Mammoth Lakes, California (source: flickr, Ormat/ BLM)

You might also like

Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU

New machine learning tool facilitates analysis of health information, clinical forecasting

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

The U.S. Geological Survey (USGS) has opened a research opportunity on “Machine learning methods for development of improved geothermal energy (conventional hydrothermal) assessments”, closing date is September 25, 2020.

The U.S. Geological Service (USGS) has published an open call under the Mendenhall Research Fellowship Program – S50. Machine learning methods for development of improved geothermal energy (conventional hydrothermal) assessments – Closing Date: September 25, 2020 – How to apply?

This Research Opportunity will be filled depending on the availability of funds. All application materials must be submitted through USAJobs by 11:59 pm, US Eastern Standard Time, on the closing date.

Background

Since the last national assessments of hydrothermal-energy resources (circa 2009), both the USGS and USDOE have invested a large amount of resources into a better understanding of hydrothermal electricity power production favorability (e.g., Play Fairway Analyses; PFA). These efforts included a systematic compilation of existing data and the collection of targeted new data.

Methods of synthesizing PFA data into favorability maps were largely expert-systems driven, so mathematical relations used are likely biased predictors. The datasets collected and the resulting favorability maps represent the collective best-judgment of teams from the geothermal industry and academic and applied researchers, so unbiased analyses of these data should improve future hydrothermal assessments.

In addition to incorporating new data (collected since the last national assessment) into hydrothermal assessment methodology, the post-doctoral researcher will be expected to interact with a wide range of USGS subject matter experts, including Energy Assessment and Minerals Assessment personnel.  There are many similarities and correlations between geothermal and mineral resource features.  For instance, important minerals are enriched and emplaced by hydrothermal fluids, geophysical and geological strategies for identifying hydrothermal flow paths and mineral deposits rely upon the same electrical and magnetic character, and other geophysical signals (e.g., gravity) may be used to identify geologic structural features that constrain both types of resource.  Although similar techniques are initially applied for energy and minerals assessment, geothermal and mineral studies rapidly diverge in goal-oriented inquiry methodology. Mineral assessments seek to identify what sorts of minerals are present, including zonation patterns where target minerals are enriched. Alternatively, geothermal studies try to identify permeable regions that may be used to efficiently extract heat from the subsurface. In short, mineral and geothermal studies have developed two toolboxes to interrogate similar systems, and it is anticipated that advancements in minerals assessments may add value to energy assessment strategies, and vice versa.

Both Energy and Minerals disciplines employ a range of quantitative methods that loosely fall into the broad category of machine learning (ML). These quantitative methods are multi-variate, and in an ideal world (but often not in practice) they account for correlations between variables to make unbiased estimates of geothermal and mineral resources. ML is an area of recent and rapid expansion of analytical techniques, and the successful applicant will seek to understand which new methods provide benefit to geothermal energy assessments.

Goal

The proposed study will advance the understanding of the degree to which ML techniques can be employed to improve resource assessments and geothermal prospectivity maps. The work will apply ML techniques to understand the relationships between highly correlated, noisy, heterogeneous datasets collected at a range of scales to improve resource assessments and prospectivity of geothermal energy.

Anticipated Skillsets

It is anticipated that the successful applicant will either have (1) extensive quantitative skills and will work closely with subject-matter experts to develop physical intuition (requiring a basic aptitude for understanding physical and conceptual models), or (2) extensive physical understanding and will work closely with ML experts to develop quantitative skills (requiring a basic mathematical aptitude). Programming skills and experience with spatial datasets are desired.

Interested applicants are strongly encouraged to contact the Research Advisor(s) early in the application process to discuss project ideas.

Proposed Duty Station: Portland, Oregon

Areas of PhD: Geology, geophysics, mathematics, engineering, statistics, computer sciences, physical scientists or related fields (candidates holding a Ph.D. in other disciplines, but with extensive knowledge and skills relevant to the Research Opportunity may be considered).

Qualifications: Applicants must meet the qualifications for Research Computer Scientist, Research Engineer, Research Geologist, Research Geophysicist, Research Mathematician, Research Physical Scientist, or Research Statistician

(This type of research is performed by those who have backgrounds for the occupations stated above.  However, other titles may be applicable depending on the applicant’s background, education, and research proposal. The final classification of the position will be made by the Human Resources specialist.)

Human Resources Office Contact: Audrey Tsujita, 916-278-9395, atsujita@usgs.gov

Apply Here

Source: USGS


Credit: Google News

Previous Post

License plate removal with OpenCV | by Leo Ertuna | Aug, 2020

Next Post

Pentagon says it plans to stick with Microsoft as JEDI cloud contract winner

Related Posts

Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU
Machine Learning

Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU

February 26, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning tool facilitates analysis of health information, clinical forecasting

February 26, 2021
Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design
Machine Learning

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

February 26, 2021
Something’s Fishy — New Funding To Tackle Illegal Activities At Sea Using Machine Learning And Data Analytics
Machine Learning

Something’s Fishy — New Funding To Tackle Illegal Activities At Sea Using Machine Learning And Data Analytics

February 26, 2021
Cloudera aims to fast track enterprise machine learning use cases with Applied ML Prototypes
Machine Learning

Cloudera aims to fast track enterprise machine learning use cases with Applied ML Prototypes

February 25, 2021
Next Post
Pentagon says it plans to stick with Microsoft as JEDI cloud contract winner

Pentagon says it plans to stick with Microsoft as JEDI cloud contract winner

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU
Machine Learning

Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU

February 26, 2021
This chart shows the connections between cybercrime groups
Internet Security

This chart shows the connections between cybercrime groups

February 26, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning tool facilitates analysis of health information, clinical forecasting

February 26, 2021
Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal
Neural Networks

Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal

February 26, 2021
Spy agency: Artificial intelligence is already a vital part of our missions
Internet Security

Spy agency: Artificial intelligence is already a vital part of our missions

February 26, 2021
Blockchain lags behind other technologies in finance adoption for now, says Broadridge
Blockchain

Blockchain lags behind other technologies in finance adoption for now, says Broadridge

February 26, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU February 26, 2021
  • This chart shows the connections between cybercrime groups February 26, 2021
  • New machine learning tool facilitates analysis of health information, clinical forecasting February 26, 2021
  • Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal February 26, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates