Wednesday, April 14, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Reducing Service Part Costs with a Machine Learning Pooling Model

November 27, 2019
in Machine Learning
Reducing Service Part Costs with a Machine Learning Pooling Model
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Dell Technologies’ Global Service Parts organization (GSP) routinely plans for parts that may need to be replaced if a system fails. Forecasting and planning for rare parts failures is like insurance. We determine the probability of failure and — based on these probabilities and several other factors — we determine where to stock parts in order to avoid impacting customers, while also controlling our costs.

If a customer has bought a same-business-day warranty, we are committed to getting the part to the customer within just hours. So, it is important to make sure we have the right parts in the right location at the right time. Since we have a large network of parts inventories, predicting where the next demand will happen is very challenging.

You might also like

ML Ops and the Promise of Machine Learning at Scale

Machine learning can help keep the global supply chain moving

AI.Reverie Appoints Former NVIDIA Deep Learning Guru Aayush Prakash as Head of Machine Learning

As an example, in the United States alone, we have over 120 warehouses (Figure 1), with tens of millions of dollars’ worth of inventory. If we were to stock at least one piece of each part across all these warehouses, the cost would be prohibitive.

figure 14 Dell EMC

Figure 1: U.S. same-business-day warehouses zip code coverage

In order to be certain that we will have the necessary parts where and when they are needed, we took our existing analytics process a step further and developed a pooling model based on optimization and machine learning techniques. This model helps us to more effectively and efficiently meet the challenge presented by expensive parts with very low failure probability. Instead of stocking each part at each warehouse across the network, the model allows us to place them at a pooled location.

Pooling locations allows us to leverage a larger geographical area with a high density of flights or an enhanced ground transportation network. We can expedite a shipment by considering the best and most feasible transportation mode between customer location and the pooled warehouse (Figures 2 and 3). Essentially, by identifying the right pooling locations, we can balance the expedited transportation cost versus the part investment. The model also considers the risk the business is willing to take.

figure 23Dell EMC

Figure 2: Modeling best and feasible transportation modes for next flight out (NFO) vs. ground transportation.

figure 32 Dell EMC

Figure 3 – Distances from a set of pooled locations to customer zip codes

 

Taking the next step

At GSP, we established pooling more than five years ago, and it has dramatically changed our stocking strategy, reducing costs in the continental United States by $18M. Based this success, we went on to consider further improvements to the model. By applying additional advanced pooling strategies, we have been able to reduce inventory cost even further.

In the model we have in production today, we have fixed pooling locations. However, a new dynamic pooling model is capable of handling even more information and can make better decisions at a more granular level. As a result, we will be moving from eight fixed pooling locations to dozens of micro-pooling areas that will make us nimbler and — based on our preliminary analysis — we expect to further reduce our stocking strategy by $2M, with no customer impact.

There are approximately  (the number of grains of sand on earth is ~) possible pooling strategies for each part in the U.S. network, and dynamic pooling smartly examines all these scenarios to find the “optimal” strategy within minutes! The main methodology used in dynamic pooling is stochastic integer programming, which finds the optimal pooling locations and inventory levels based on set of probabilistic parameters. As a result, our dynamic pooling model gives us the flexibility to add or remove locations on a weekly basis based on three primary factors:

  1. Price of the parts
  2. Expedited shipment cost
  3. Probability of failure of each part at each location. The probability of failures is an output of a supervised machine learning model that uses regression and classification techniques.

As an example of the influence of price, Figure 4 shows different strategies, assuming a part has the same low demand but different prices. As you can see, when a part is relatively inexpensive —$20 — it is not worthwhile to pay the expedited price. So, we plan locally at each warehouse. On the other hand, when the part cost is $2,000, the model recommends only seven locations from where we can expedite transportation either by ground or next flight out.

figure 42Dell EMC

Figure 4 – Example of the influence of price on number of pooled locations.

The application of optimization, together with machine learning models, helped Dell Technologies’ Global Service Parts organization to reduce inventory without impacting our customers, with a pooling model that has now been in place for more than five years. Constantly looking for opportunities to improve this model has led to even further cost reductions through a new dynamic pooling model capable of handling more information and making better decisions at a more granular level. The next phase will be to extend the model into other regions around the world, which presents a new set of challenges. Fortunately, we will be working with an excellent global partner ecosystem, with expertise in putting AI models such as this into operation.

To learn more

Copyright © 2019 IDG Communications, Inc.

Credit: Google News

Previous Post

Gaming Laptops for Data Science. The Goods and the Bads

Next Post

Survey Download – AI in Drug Development

Related Posts

ML Ops and the Promise of Machine Learning at Scale
Machine Learning

ML Ops and the Promise of Machine Learning at Scale

April 14, 2021
Machine learning can help keep the global supply chain moving
Machine Learning

Machine learning can help keep the global supply chain moving

April 14, 2021
AI.Reverie Appoints Former NVIDIA Deep Learning Guru Aayush Prakash as Head of Machine Learning
Machine Learning

AI.Reverie Appoints Former NVIDIA Deep Learning Guru Aayush Prakash as Head of Machine Learning

April 13, 2021
Machine Learning Approach In Fantasy Sports: Cricket
Machine Learning

Machine Learning Approach In Fantasy Sports: Cricket

April 13, 2021
ANZ Bank: We’ve been using machine learning for 20 years
Machine Learning

ANZ Bank: We’ve been using machine learning for 20 years

April 13, 2021
Next Post
Survey Download – AI in Drug Development

Survey Download – AI in Drug Development

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Microsoft April patch download covers 114 CVEs including new Exchange Server bugs
Internet Security

Microsoft April patch download covers 114 CVEs including new Exchange Server bugs

April 14, 2021
RCE Exploit Released for Unpatched Chrome, Opera, and Brave Browsers
Internet Privacy

RCE Exploit Released for Unpatched Chrome, Opera, and Brave Browsers

April 14, 2021
DSC Weekly Digest 01 March 2021
Data Science

DSC Weekly Digest 12 April 2021

April 14, 2021
ML Ops and the Promise of Machine Learning at Scale
Machine Learning

ML Ops and the Promise of Machine Learning at Scale

April 14, 2021
How to Enter Your First Zindi Competition | by Davis David
Neural Networks

How to Enter Your First Zindi Competition | by Davis David

April 14, 2021
B2B Content Marketing – Facing Challenges
Marketing Technology

B2B Content Marketing – Facing Challenges

April 14, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Microsoft April patch download covers 114 CVEs including new Exchange Server bugs April 14, 2021
  • RCE Exploit Released for Unpatched Chrome, Opera, and Brave Browsers April 14, 2021
  • DSC Weekly Digest 12 April 2021 April 14, 2021
  • ML Ops and the Promise of Machine Learning at Scale April 14, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates