Sunday, April 11, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Policy lab explores how government administers by algorithm

February 28, 2019
in Machine Learning
Policy lab explores how government administers by algorithm
587
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: Google News

By Erin I. Garcia de Jesus

You might also like

New machine learning method accurately predicts battery state of health

Can a Machine Learning Model Predict T2D?

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

Federal administrative agencies across the United States employ machine learning and artificial intelligence to make decisions. But what happens when agencies can’t explain how those algorithms work? Students in a policy lab at Stanford, Administering by Algorithm: Artificial Intelligence in the Regulatory State, are exploring this question and what it means for the future when law and computers intersect.

An interdisciplinary policy lab harnesses Stanford’s unique mix of legal and technical expertise. (Image credit: Getty Images)

Stanford co-instructors David Engstrom, Daniel Ho and California Supreme Court Justice Mariano-Florentino Cuéllar – along with Professor Catherine Sharkey of New York University School of Law – have brought together 25 burgeoning lawyers, computer scientists and engineers to probe the technologies government agencies develop and deploy. The lab culminates in a report that will be submitted to the Administrative Conference of the United States (ACUS), which puts forward guidelines outlining how such government agencies should operate.

“We want to understand what is happening now and we also want to get inside agencies and really understand what might be coming down the pike in the next five or 10 years,” said Engstrom, a professor of law.

Combining law and technology

Engstrom sees the lab as a model for a new type of interdisciplinary work that harnesses Stanford’s unique mix of legal and technical expertise. As artificial intelligence and machine learning become more sophisticated, laws will need to adapt to accommodate for developing technology. But in some cases, federal agencies can’t understand the “black box systems” they implement to do government work, from allocating benefits to prosecuting violations. Computer scientists themselves may not fully comprehend why AI makes the decisions it does.

“We have a collision between a body of law that says we want agencies to explain why they’re doing what they’re doing and agencies using tools that, by their very structure, are not fully explainable,” Engstrom explained.

The course evolved as a way of addressing this clash.

“Some of the most interesting conversations have required both a technical grasp and a legal understanding of a problem,” said Ho, the William Benjamin Scott and Luna M. Scott Professor of Law. “Observing that conversation play out between the students is really rewarding.”

Working together

The lab is divided into teams – each a mix of law and computer science students – who were given two tasks. First, the teams fanned out to probe the 100 most important federal administrative agencies, including the Environmental Protection Agency, Social Security Administration, and Securities and Exchange Commission. When they found examples of algorithms involved in decision-making, the students worked together to evaluate the technology and judge what category it fell into: Was it AI, machine learning or something far more basic?

Next, they engaged with the agencies themselves to examine specific applications and understand where the technology might be headed. Students brainstormed how new technological advances might intersect with the law – and how to navigate those collisions. Their results, Engstrom said, will be written in the ACUS report, which they hope will influence future policies governing agencies.

“It is the most collaborative and interdisciplinary class that I’ve been in at Stanford,” said Cristina Ceballos, a third-year law student and PhD student in philosophy.

She added that without the CS students on her team, she wouldn’t know what questions to ask when speaking with agency representatives. “I think that if you are going to regulate how agencies are going to use AI, you have to have some sense of what the AI is actually doing,” she said.

Urvashi Khandelwal, a fourth-year computer science PhD student, said it’s important for people in her field to explore how to deploy AI and machine learning in the real world. “I’ve heard a lot about what machine learning researchers are talking about,” she said, “but I did not have much perspective on the legal side or the policy side.”

Real-life impacts

Engstrom and Ho expect that their students will finish the course with a deeper appreciation of how interdisciplinary work leads to better solutions.

Derin McLeod, a second-year law student, said that he appreciates the value of having two disciplines together in the same room when thinking about complex issues. “Going back and forth tracks the challenges that we are trying to grapple with,” McLeod said. “It’s not just a technical problem of one kind or another, it’s explaining it to other audiences.”

For CS students, Engstrom hopes they will have a “greater sense of the promise and peril of the tools they develop.”

Indeed, Sandhini Agarwal, a senior majoring in symbolic systems and the only undergraduate in the class, recognizes that developing AI and machine learning could have significant consequences. “I’m learning how to ground some of the ideas we build in CS classes and seeing, when they are actually being used in the real world, what are some challenges that we face,” Agarwal said.

“The coolest thing about the class is the back and forth between the CS and law students,” Agarwal added. “I’m excited for more collaborations to take place.”

Credit: Google News

Previous Post

The History of Chess AI – Becoming Human: Artificial Intelligence Magazine

Next Post

How to Choose the Right Chart Type [Infographic]

Related Posts

Basic laws of physics spruce up machine learning
Machine Learning

New machine learning method accurately predicts battery state of health

April 11, 2021
Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
IBM releases Qiskit modules that use quantum computers to improve machine learning
Machine Learning

IBM releases Qiskit modules that use quantum computers to improve machine learning

April 10, 2021
One-stop machine learning platform turns health care data into insights | MIT News
Machine Learning

One-stop machine learning platform turns health care data into insights | MIT News

April 10, 2021
Next Post
How to Choose the Right Chart Type [Infographic]

How to Choose the Right Chart Type [Infographic]

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Job Scope For MSBI In 2021
Data Science

Job Scope For MSBI In 2021

April 11, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning method accurately predicts battery state of health

April 11, 2021
Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success
Data Science

Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success

April 11, 2021
Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison
Data Science

Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison

April 10, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Job Scope For MSBI In 2021 April 11, 2021
  • New machine learning method accurately predicts battery state of health April 11, 2021
  • Can a Machine Learning Model Predict T2D? April 11, 2021
  • Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success April 11, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates