Monday, April 12, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Opinion: Why we should be worried about artificial intelligence on Wall Street

November 1, 2019
in Machine Learning
Opinion: Why we should be worried about artificial intelligence on Wall Street
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Until recently, artificial intelligence has struggled to gain a foothold on Wall Street. No longer.

In the last few years, large investment banks like Goldman Sachs and JP Morgan have hired artificial intelligence specialists away from academia and put them in charge of their internal AI divisions. Financial technology start-ups have begun using machine-learning algorithms to model credit ratings and detect fraud. And hedge funds and high-frequency traders are using AI to make investment decisions.

You might also like

Hawaiʻi’s Keck Observatory Aids in Discovery of Rare “Quadruply Imaged Quasars”

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors

Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

Politicians are starting to take notice. In mid-October, the newly formed Task Force on Artificial Intelligence of the House Financial Service Committee held hearings on how AI could raise data privacy concerns in the financial industry. In June, Sen. Elizabeth Warren called on federal regulators to crack down on “algorithmic discrimination” by financial institutions, noting that financial technology companies often charge minorities higher interest rates.

Artificial intelligence also could fundamentally change the way that our financial system works. And until we understand how those changes could play out, we will be ill-equipped to deal with them. In the last decade, the broader field of artificial intelligence has made remarkable strides. We have seen AI beat the world’s best players of “Jeopardy” and the ancient board game Go, identify unknown genes related to Lou Gehrig’s disease and power driverless cars around the streets of Phoenix. These achievements have been enabled by better algorithms, more powerful computers and ever-bigger data sets.

For many reasons, the rise of artificial financial intelligence on Wall Street should be applauded. It is a good thing if we can find ways to deploy capital more efficiently, identify risk more accurately or simply make money faster. It can smooth the gears of commerce and, at least theoretically, raise all boats.

But every new tool has its quirks and its risks, and AI is no exception.

The problems with AI in finance stem from the way AI algorithms work. Today, when people talk about AI they are really talking about a specific field of computer science known as machine learning. Machine-learning algorithms are fed large amounts of information and predict future events by identifying patterns in the information. At the base of this complex system is data, which drives AI.

But the very features of AI that have allowed it to be so successful in other arenas also make it dangerous when applied to the financial world. These threats mirror the problems that created the last financial crisis — when complex derivatives and poorly understood subprime mortgages sent the world into a deep depression — and must be taken seriously.

For one, AI could lead to financial bubbles growing bigger or lasting longer by feeding the flames of irrational exuberance. Machine-learning algorithms rely on large data sets to make predictions about the world.

If the data used to make these predictions is outdated, financial chaos could ensue.

Imagine if you trained an AI on a data set that included stock market returns from 1992 to 2000 — it might conclude that tech stocks always outperformed non-tech stocks because that was true during that time span. It wouldn’t factor in information from after the dot-com bubble burst in 2002 that would alter this conclusion. AI algorithms trained on skewed data might well invest yet more money into tech stocks, inflating the bubble even further.

AI optimists would say that, sure, AI has limitations, but responsible decision-makers are aware of them and will respond appropriately. AI is simply another tool in the toolshed.

But because AI algorithms are so complex and data-dependent, it is extremely hard to understand how they work. The spread of complex, inscrutable financial instruments was at the root of the 2007 financial crisis and may well be at the root of the next.

We learned from the last crash that when something is hard to understand — such as the collateralized debt obligations that packaged together collections of risky subprime mortgages in a way that purported to make them safe — it is also hard to second-guess. If financial decision-makers have an AI recommendation, which contains a clear “answer” and purports to be based on millions of pieces of information, they will be hard-pressed to ignore it. It could become not so much a tool as a crutch.

Perhaps most importantly, we are not sure how AI algorithms will interact with each other in the jungles of Wall Street. In capital markets, stock prices depend heavily on the decisions of other participants in the market. If most of the participants are AI-driven, and they adopt broadly similar machine-learning strategies, they might create echo effects where they all pile into (or out of) a stock at a moment’s notice. Flash crashes might become more frequent as a result.

This is particularly troubling given the rise of simple yet devastatingly effective adversarial strategies that attempt to fool AI algorithms into behaving in unexpected ways. For example, one study found that affixing a few small black and white stickers onto a stop sign tricked an image-recognition algorithm into never recognizing it.

While this creates a major problem for self-driving cars, it could wreak havoc in the financial world. Bad actors might spread financial information known to cause investment algorithms to misfire, or intentionally manipulate data to hide fraud.

Warren was right to call attention to the issues of AI in finance, and federal regulators would be well-advised to take her concerns seriously. This is about much more than just a game of “Jeopardy” or Go. It is about ensuring that technology makes finance better, fairer and more efficient for all.

William Magnuson is an associate professor at Texas A&M Law School, where he researches technology, corporations and financial regulation.


Credit: Google News

Previous Post

On Halloween night, Google discloses Chrome zero-day exploited in the wild

Next Post

Chaff Bugs and AI Autonomous Cars

Related Posts

Hawaiʻi’s Keck Observatory Aids in Discovery of Rare “Quadruply Imaged Quasars”
Machine Learning

Hawaiʻi’s Keck Observatory Aids in Discovery of Rare “Quadruply Imaged Quasars”

April 12, 2021
AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors
Machine Learning

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors

April 12, 2021
Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning
Machine Learning

Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

April 11, 2021
Why Machine Learning Over Artificial Intelligence?
Machine Learning

Why Machine Learning Over Artificial Intelligence?

April 11, 2021
27 million galaxy morphologies quantified and cataloged with the help of machine learning
Machine Learning

27 million galaxy morphologies quantified and cataloged with the help of machine learning

April 11, 2021
Next Post
Chaff Bugs and AI Autonomous Cars

Chaff Bugs and AI Autonomous Cars

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Ransomware: The internet’s biggest security crisis is getting worse. We need a way out
Internet Security

Ransomware: The internet’s biggest security crisis is getting worse. We need a way out

April 12, 2021
Data Center Infrastructure Market is Projected to Reach USD 100 Billion by 2027
Data Science

Data Center Infrastructure Market is Projected to Reach USD 100 Billion by 2027

April 12, 2021
Hawaiʻi’s Keck Observatory Aids in Discovery of Rare “Quadruply Imaged Quasars”
Machine Learning

Hawaiʻi’s Keck Observatory Aids in Discovery of Rare “Quadruply Imaged Quasars”

April 12, 2021
Interpretive Analytics in One Picture
Data Science

Interpretive Analytics in One Picture

April 12, 2021
AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors
Machine Learning

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors

April 12, 2021
Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning
Machine Learning

Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

April 11, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Ransomware: The internet’s biggest security crisis is getting worse. We need a way out April 12, 2021
  • Data Center Infrastructure Market is Projected to Reach USD 100 Billion by 2027 April 12, 2021
  • Hawaiʻi’s Keck Observatory Aids in Discovery of Rare “Quadruply Imaged Quasars” April 12, 2021
  • Interpretive Analytics in One Picture April 12, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates