Sunday, April 11, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Novel machine learning algorithm helps find drug binding sites

October 27, 2020
in Machine Learning
Novel machine learning algorithm helps find drug binding sites
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Reviewed by Emily Henderson, B.Sc.Oct 27 2020

Scientists from the iMolecule group at Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) developed BiteNet, a machine learning (ML) algorithm that helps find drug binding sites, i.e. potential drug targets, in proteins. BiteNet can analyze 1,000 protein structures in 1.5 minutes and find optimal spots for drug molecules to attach. The research was published in the Communications Biology journal.

You might also like

Why Machine Learning Over Artificial Intelligence?

27 million galaxy morphologies quantified and cataloged with the help of machine learning

Machine learning and big data needed to learn the language of cancer and Alzheimer’s

Proteins, the molecules that control most biological processes, are typically the common targets for drugs. To produce a therapeutic effect, drugs should attach to proteins at specific sites called binding sites. The protein’s ability to bind to a drug is determined by the site’s amino acid sequence and spatial structure. Binding sites are real “hot spots” in pharmacology. The more binding sites are known, the more opportunities there are for creating more effective and safer drugs.

Skoltech CDISE assistant professor Petr Popov and Ph.D. student Igor Kozlovskii developed a new computational approach for spatio-temporal detection of binding sites in proteins by applying deep learning algorithms and computer vision to protein structures treated as 3D images. With this new technology, one can detect even elusive sites: for instance, scientists managed to detect binding sites concealed in experimental atomic structures or formed by several protein molecules for the ion channel, G protein-coupled receptor, and the epithelial growth factor, one of the most important drug targets.

The human genome consists of nearly 20,000 proteins, and very few among them get associated with a pharmacological target. Our approach allows searching the protein for binding sites for drug-like compounds, thus expanding the array of possible pharmacological targets. Besides, initial structure-based drug discovery strongly depends on the choice of the protein’s atomic structure. Working on a structure with the binding site barred for the drug or missing altogether can fail. Our method enables analyzing a large number of structures in a protein and finding the most suitable one for a specific stage.”


Petr Popov, study lead and assistant professor at Skoltech

According to Igor Kozlovskii, the first author of the paper, BiteNet outperforms its counterparts both in speed and accuracy: “BiteNet is based on the computer vision, we treat protein structures as images, and binding sites as objects to detect on this images. It takes about 0.1 seconds to analyze one spatial structure and 1.5 minutes to evaluate 1,000 protein structures of about 2,000 atoms.”

Source:

Skolkovo Institute of Science and Technology (Skoltech)

Journal reference:

Kozlovskii, I & Popov, P (2020) Spatiotemporal identification of druggable binding sites using deep learning. Communications Biology. doi.org/10.1038/s42003-020-01350-0.

Credit: Google News

Previous Post

Zoom rolls out encryption for all desktop and mobile users

Next Post

Rockset boosted with $40 million Series B venture round

Related Posts

Why Machine Learning Over Artificial Intelligence?
Machine Learning

Why Machine Learning Over Artificial Intelligence?

April 11, 2021
27 million galaxy morphologies quantified and cataloged with the help of machine learning
Machine Learning

27 million galaxy morphologies quantified and cataloged with the help of machine learning

April 11, 2021
Machine learning and big data needed to learn the language of cancer and Alzheimer’s
Machine Learning

Machine learning and big data needed to learn the language of cancer and Alzheimer’s

April 11, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning method accurately predicts battery state of health

April 11, 2021
Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
Next Post
Rockset boosted with $40 million Series B venture round

Rockset boosted with $40 million Series B venture round

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Why Machine Learning Over Artificial Intelligence?
Machine Learning

Why Machine Learning Over Artificial Intelligence?

April 11, 2021
27 million galaxy morphologies quantified and cataloged with the help of machine learning
Machine Learning

27 million galaxy morphologies quantified and cataloged with the help of machine learning

April 11, 2021
Machine learning and big data needed to learn the language of cancer and Alzheimer’s
Machine Learning

Machine learning and big data needed to learn the language of cancer and Alzheimer’s

April 11, 2021
Job Scope For MSBI In 2021
Data Science

Job Scope For MSBI In 2021

April 11, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning method accurately predicts battery state of health

April 11, 2021
Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Why Machine Learning Over Artificial Intelligence? April 11, 2021
  • 27 million galaxy morphologies quantified and cataloged with the help of machine learning April 11, 2021
  • Machine learning and big data needed to learn the language of cancer and Alzheimer’s April 11, 2021
  • Job Scope For MSBI In 2021 April 11, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates