Friday, March 5, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Neural Networks

No Bias Labeled Data — the New Bottleneck in Machine Learning | by ByteBridge | Feb, 2021

February 23, 2021
in Neural Networks
No Bias Labeled Data — the New Bottleneck in Machine Learning | by ByteBridge | Feb, 2021
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Over the last few years, there has been a burst of excitement for AI-based applications through businesses, governments, and the academic community. For example, computer vision and natural language processing (NLP) where output values are high-dimensional and high-variance. In these areas, machine learning techniques are highly helpful.

Indeed, AI depends more on the training data than the code. “The current generations of AI are what we call machine learning (ML) — in the sense that we’re not just programming computers, but we’re training and teaching them with data,” said Michael Chui, Mckinsey global institute partner in a podcast speech.

You might also like

Labeling Case Study — Agriculture— Pigs’ Productivity, Behavior, and Welfare Image Labeling | by ByteBridge | Feb, 2021

8 concepts you must know in the field of Artificial Intelligence | by Diana Diaz Castro | Feb, 2021

The Examples and Benefits of AI in Healthcare: From accurate diagnosis to remote patient monitoring | by ITRex Group | Mar, 2021

AI feeds heavily on data. Andrew Ng, former AI head of Google and Baidu, states data is the rocket fuel needed to power the ML rocket ship. Andrew also mentions that companies and organizations which are taking AI seriously are eager to acquire the correct and useful data. Moreover, as the number of parameters and the complexity of problems increases, the need for high-quality data at scale grows exponentially.

An Alegion survey reports that nearly 8 out of 10 enterprises currently engaged in AI and ML projects have stalled. The research also reveals that 81% of the respondents admit the process of training AI with data is more difficult than they expected before.

It is not a unique case. According to a 2019 report by O’Reilly, the issue of data ranks the second-highest obstacle in AI adoption. Gartner predicted that 85% of AI projects will deliver erroneous outcomes due to bias in labeled data, algorithms, the R&D team’s management, etc.

Big Data Jobs

The data limitations in machine learning include but not limited to:

Data Collection: Issues such as inaccurate data, insufficient representatives, biased views, loopholes, and data ambiguity affect ML’s decision and precision. Especially during Covid-19, certain data has not been available for some AI enterprises.

Data Quality: Since most machine learning algorithms use supervised approaches, ML engineers need consistent, reliable data in order to create, validate, and maintain production for high-performing machine learning models. Low-quality labeled data can actually backfire twice: during the training model building process and future decision-making.

Efficiency: In the process of machine learning project development, 25% of the time is used for data annotation. Only 5% of the time is spent on training algorithms. The reasons for spending a lot of time on data labeling are as follows:

  • The algorithm engineer needs to go through repeated tests to determine which label data is more suitable for the training algorithm.
  • Training a model needs tens of thousands or even millions of training data, which takes a lot of time. For example, an in-house team composed of 10 labelers and 3 QA inspectors can complete around 10,000 automatic driving lane image labeling in 8 days.

1. Write Your First AI Project in 15 Minutes

2. Generating neural speech synthesis voice acting using xVASynth

3. Top 5 Artificial Intelligence (AI) Trends for 2021

4. Why You’re Using Spotify Wrong

How to avoid sample bias while obtaining large scale data?

Accuracy

Dealing with complex tasks, the task is automatically transformed into tiny component to make the quality as high as possible as well as maintain consistency.

All work results are completely screened and inspected by the machine and the human workforce.

Efficiency

The real-time QA and QC are integrated into the labeling workflow.

ByteBridge takes full advantage of the platform’s consensus mechanism which greatly improves the data labeling efficiency and gets a large amount of accurate data labeled in a short time.

Consensus — Assign the same task to several workers, and the correct answer is the one that comes back from the majority output.

Ease of use

The easy-to-integrate API enables the continuous feeding of high-quality data into a new application system.

“We have streamlined data collection and labeling process to relieve machine learning engineers from data preparation. The vision behind ByteBridge is to enable engineers to focus on their ML projects and get the value out of data,” said Brian Cheong, CEO of ByteBridge.

Both the quality and quantity of data matters for the success of AI outcome. Designed to power AI and ML industry, ByteBridge promises to usher in a new era for data labeling and collection, and accelerates the advent of the smart AI future.

Credit: BecomingHuman By: ByteBridge

Previous Post

Powerhouse VPN products can be abused for large-scale DDoS attacks

Next Post

Scientists use machine-learning approach to track disease-carrying mosquitoes

Related Posts

Labeling Case Study — Agriculture— Pigs’ Productivity, Behavior, and Welfare Image Labeling | by ByteBridge | Feb, 2021
Neural Networks

Labeling Case Study — Agriculture— Pigs’ Productivity, Behavior, and Welfare Image Labeling | by ByteBridge | Feb, 2021

March 5, 2021
8 concepts you must know in the field of Artificial Intelligence | by Diana Diaz Castro | Feb, 2021
Neural Networks

8 concepts you must know in the field of Artificial Intelligence | by Diana Diaz Castro | Feb, 2021

March 5, 2021
The Examples and Benefits of AI in Healthcare: From accurate diagnosis to remote patient monitoring | by ITRex Group | Mar, 2021
Neural Networks

The Examples and Benefits of AI in Healthcare: From accurate diagnosis to remote patient monitoring | by ITRex Group | Mar, 2021

March 4, 2021
3 Types of Image Segmentation. If you are getting started with Machine… | by Doga Ozgon | Feb, 2021
Neural Networks

3 Types of Image Segmentation. If you are getting started with Machine… | by Doga Ozgon | Feb, 2021

March 4, 2021
The Role Of Artificial Intelligence In The Fight Against COVID | by B-cube.ai | Feb, 2021
Neural Networks

The Role Of Artificial Intelligence In The Fight Against COVID | by B-cube.ai | Feb, 2021

March 4, 2021
Next Post
Scientists use machine-learning approach to track disease-carrying mosquitoes

Scientists use machine-learning approach to track disease-carrying mosquitoes

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

FTC joins 38 states in takedown of massive charity robocall operation
Internet Security

FTC joins 38 states in takedown of massive charity robocall operation

March 5, 2021
Google Cloud Certifications — Get Prep Courses and Practice Tests at 95% Discount
Internet Privacy

Google Cloud Certifications — Get Prep Courses and Practice Tests at 95% Discount

March 5, 2021
Three Finalists Selected in $4.5 Million Watson AI XPrize Competition  
Artificial Intelligence

Three Finalists Selected in $4.5 Million Watson AI XPrize Competition  

March 5, 2021
How to Boost Machine Learning in Healthcare Market Compound Annual Growth Rate (CAGR)? – KSU
Machine Learning

How to Boost Machine Learning in Healthcare Market Compound Annual Growth Rate (CAGR)? – KSU

March 5, 2021
Accellion zero-day claims a new victim in cybersecurity company Qualys
Internet Security

Accellion zero-day claims a new victim in cybersecurity company Qualys

March 5, 2021
How to Meet the Enterprise-Grade Challenge of Scaling AI 
Artificial Intelligence

How to Meet the Enterprise-Grade Challenge of Scaling AI 

March 5, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • FTC joins 38 states in takedown of massive charity robocall operation March 5, 2021
  • Google Cloud Certifications — Get Prep Courses and Practice Tests at 95% Discount March 5, 2021
  • Three Finalists Selected in $4.5 Million Watson AI XPrize Competition   March 5, 2021
  • How to Boost Machine Learning in Healthcare Market Compound Annual Growth Rate (CAGR)? – KSU March 5, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates