Friday, March 5, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Neural Networks And Machine Learning Are Powering A New Era Of Perceptive Intelligence

May 19, 2020
in Machine Learning
Neural Networks And Machine Learning Are Powering A New Era Of Perceptive Intelligence
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

The human interface that connects us with machines — the way we interact and control them — has changed a lot over the years. From tactile methods like knobs, buttons, keyboards, pads and touch screens to more recent voice and visual command capabilities, we’ve adapted our devices to become more user-friendly and more humanlike by using more intuitive input techniques. We’ve all grown accustomed to the swipe, the pinch, the “Hey, Google,” and the hand gesture to tell our devices what to do. But they still require the human element, a proactive direction by a person. That, too, is changing.

A new generation — indeed, ecosystem — of devices, will be driven by interfaces that perceive your wants and needs. Welcome to the future of IoT and perceptive intelligence, where user interaction is optional and contextual awareness is machine learning enabled. When devices transition from collecting and transferring information to using that information intelligently on their own, computing has become ambient.

You might also like

UVA doctors give us a glimpse into the future of artificial intelligence

Machine intelligence – Spy agencies have high hopes for AI | Science & technology

AI and machine learning’s moment in health care

Although based on some level of human interaction, ambient computing doesn’t require active participation. Artificial intelligence and deep learning can now power entire integrated ecosystems of devices to learn about users, their environments and their preferences, and then adjust accordingly to provide the optimal response or action. This kind of perceptive intelligence is enabled by sensors and vision and is embedded in our living and working spaces in a way that allows its use without being fully aware that we are doing so.

This level of intelligence is a result of the progression of AI and machine learning to deep neural networks that change the paradigm from sensing to perception and, ultimately, recognition of intent. Recent breakthroughs in deep learning are creating a revolution in the application of AI-to-speech recognition, visual object recognition and object detection. The connected devices provide the data and the AI learns from that data to perform certain tasks without human intervention.

Best of all, perceptive intelligence doesn’t even require a connection to the internet. Edge-based processing now has the performance and accuracy required (as well as the energy efficiency and small form factors to fit in battery-powered consumer products) to run sophisticated AI and machine learning algorithms locally, sparing users the cost, bandwidth, latency and privacy challenges of a cloud-based model. Now, devices can collect and analyze video and audio data and respond intelligently in near real time — without the risk of compromising user privacy or security or the cost of transmitting literally zettabytes of data to the cloud-based data centers.

Voice, Then Video

Voice-enabled systems are already having a major impact on the move toward perceptive intelligence. This goes far beyond simply asking your voice assistant a direct question or issuing it a specific command. Performance and feature breakthroughs using a far-field voice interface brings a more natural user convenience and usefulness to voice-enabled devices. More and more, smart devices are becoming context and conversationally aware, sensing needs, preferences or relationships between information without requiring direct commands.

This level of functionality has benefitted from deep neural networks that drive adaptive machine learning. In a voice-enabled system, this is an expansion of a system’s functionality — a larger vocabulary, for example, or voice biometrics for security and identity purposes. This allows a broader range of input styles or terms so that users are not reliant on just on a few trigger words (e.g., “Hey, Siri”). This creates a more natural interface that can also recognize intent based on contextual events, previous behavior or commands.

Advancements in computer vision, as well as the ability to enable vision on the edge, are broadening the possibilities of ambient computing. It’s a linchpin in a true multimodal approach to the IoT interface, where voice, gestures, gaze and touch will all play a role.

Such systems are taking advantage of much more humanlike, neuromorphic approaches that mimic how the human brain and eye work. As with voice, deep neural networks in machine vision power new levels of intelligence and contextual awareness. This includes facial recognition that can then interpret intent or preferences based on prior knowledge; a TV or set-top box that serves up content you typically watch on a Saturday night; a smart speaker/display device that can recognize you as soon as you walk in and deliver your personal updates, recommendations and schedule; a security system that recognizes a legitimate delivery from a porch thief; or a coffee maker that knows just how you like your morning brew.

Thanks to more efficient neural networks that can run on the edge, devices can enable richer, more accurate visual awareness that can be used to drive decision making by machines and not need to connect to the cloud to do so in many cases.

Such automation has many potential uses in the workplace as well, including security and access systems, perceptive controls for heating and lighting, and productivity-oriented tools for automated collaboration — all of which can use voice, gestures or other nonverbal interfaces to infer intent in an office or other work environment. Before adopting such systems, however, companies will want to understand important issues around security, integration with existing systems and the specific use model for each tool.

Human-machine interface (HMI) is an important component in improving the user experience when it comes to connected devices. Enhancements in how machines can collect audio and visual data and use it to understand and predictively respond to our actions are a game-changer for the future of IoT. Understanding intent, not just commands, will transform devices into truly helpful assistants.

Credit: Google News

Previous Post

FBI warns about attacks on Magento online stores via old plugin vulnerability

Next Post

British Airline EasyJet Suffers Data Breach Exposing 9 Million Customers' Data

Related Posts

UVA doctors give us a glimpse into the future of artificial intelligence
Machine Learning

UVA doctors give us a glimpse into the future of artificial intelligence

March 5, 2021
Machine intelligence – Spy agencies have high hopes for AI | Science & technology
Machine Learning

Machine intelligence – Spy agencies have high hopes for AI | Science & technology

March 5, 2021
AI and machine learning’s moment in health care
Machine Learning

AI and machine learning’s moment in health care

March 4, 2021
Could Privacy-Preserving, Machine-Learning Tools Recover Private Data? [STUDY]
Machine Learning

Could Privacy-Preserving, Machine-Learning Tools Recover Private Data? [STUDY]

March 4, 2021
Machine learning: is there a limit to technological patents in Brazil?
Machine Learning

The use of artificial intelligence in life sciences and the protection of the IP rights

March 4, 2021
Next Post
British Airline EasyJet Suffers Data Breach Exposing 9 Million Customers’ Data

British Airline EasyJet Suffers Data Breach Exposing 9 Million Customers' Data

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

With its acquisition of Auth0, Okta goes all in on CIAM
Internet Security

With its acquisition of Auth0, Okta goes all in on CIAM

March 5, 2021
Survey Finds Many Companies Do Little or No Management of Cloud Spending  
Artificial Intelligence

Survey Finds Many Companies Do Little or No Management of Cloud Spending  

March 5, 2021
UVA doctors give us a glimpse into the future of artificial intelligence
Machine Learning

UVA doctors give us a glimpse into the future of artificial intelligence

March 5, 2021
Labeling Case Study — Agriculture— Pigs’ Productivity, Behavior, and Welfare Image Labeling | by ByteBridge | Feb, 2021
Neural Networks

Labeling Case Study — Agriculture— Pigs’ Productivity, Behavior, and Welfare Image Labeling | by ByteBridge | Feb, 2021

March 5, 2021
Brand Positioning and Competitors’ Positioning
Marketing Technology

Brand Positioning and Competitors’ Positioning

March 5, 2021
Singapore Airlines frequent flyer members hit in third-party data security breach
Internet Security

Singapore Airlines frequent flyer members hit in third-party data security breach

March 5, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • With its acquisition of Auth0, Okta goes all in on CIAM March 5, 2021
  • Survey Finds Many Companies Do Little or No Management of Cloud Spending   March 5, 2021
  • UVA doctors give us a glimpse into the future of artificial intelligence March 5, 2021
  • Labeling Case Study — Agriculture— Pigs’ Productivity, Behavior, and Welfare Image Labeling | by ByteBridge | Feb, 2021 March 5, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates