Monday, April 12, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Machine learning will help EHRs fulfill precision medicine’s promise

January 19, 2019
in Machine Learning
Machine learning will help EHRs fulfill precision medicine’s promise
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: Google News

Electronic health records are very good at being repositories for valuable patient data. But they need help when it comes to putting that data to work for more innovative care delivery. The ever-expanding volume and variety of clinical and social-determinant factors will require more advanced technologies to be optimally harnessed for precision medicine.

You might also like

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors

Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

Why Machine Learning Over Artificial Intelligence?

Enter AI and machine learning, which “will play a growing role in healthcare, under two main categories – generating knowledge and processing data,” said Auckland, New Zealand-based Kevin Ross, who will speak next month at HIMSS19.

Ross is general manager at Precision Driven Health, launched as a partnership between Orion Health (where he is director of research) and government agencies and academic organizations in New Zealand to explore and promote precision medicine. He sees machine learning as a key enabler in the years ahead as health systems look to unlock the data and in their EHRs and put it to work for more personalized care.

“Health records have been electronic – and therefore accessible for analysis – for a relatively short period of time, but we are now seeing huge volumes of data being generated from different sources,” he explains. “We’ve had insufficient computational power to process the volume of data in a genome, let alone a microbiome, etc. until fairly recently.”

The advent of AI and machine learning opens new avenues for healthcare wisdom to be accrued. Medical research has traditionally come through “targeted studies on narrow subsets of the population,” he said, “now we can analyze over large populations in relative real time, because the data is being collected digitally. New knowledge will come about by applying machine learning to these increased data sets to uncover patterns that are occurring today without being noticed.”

In Orlando, Ross will explain how he and other researchers are making the most of some unique aspects of New Zealand’s healthcare landscape – connected electronic healthcare data across the population, leading-edge research organizations – to enable the development of new technologies and data strategies for precision medicine.

“New Zealand has some unique benefits, including a long history of digital health records with well managed health ID numbers, so it is a lot easier to link different data sets together,” he explains. Add to that :

  • Linked data between social services (health, education, justice, welfare, tax) available for research purposes;
  • A single payer system whereby the incentive of patient, provider, and system are typically well aligned (e.g. early intervention benefits all)
  • Willing collaboration between commercial and public provider organizations as well as between clinical and data science researchers
  • A unique ethnic diversity (74 percent European, 15 percent Maori, 12 percent Asian, 7 percent Pacific Islander – including those identifying multiple)
  • A strong data science research community
  • A population relatively comfortable with technology and with broad access

All that, plus the fact that New Zealand has a smallish population (fewer than 5 million people) means that “research is more likely to be population wide rather than highly specialized,” said Ross.

From that remote corner of the globe to other health systems worldwide, he sees a big future ahead for AI-enabled EHRs – enabling a fast evolution for precision medicine.

“Machine learning can be used to aid intensive tasks such as processing large data sets for genomics, image processing or network analysis, as well as finding anomalies – such as for diagnosis or fraud detection – and identifying cohorts,” he said. “There are interesting applications in maintaining records such as matching data from different systems, inferring missing data elements.”

And as the evolutions continue apace, what should health systems who have already begun AI implementations be doing to ensure they’re making best use of machine learning in their workflows?

“Design systems with a view to interoperability and data sharing,” said Ross. “Use standards, build tagging into systems. And make it easy for patients to control the use and sharing of their data, and see the benefits from it.”

In addition, he advised health systems to make the most of all the data they have on hand: “Even ‘dirty’ data can have incredible predictive value,” he said. “Don’t wait for perfect data to start using it.”

Ross’ presentation, “Machine Learning Over Our Growing Electronic Health Records,” is scheduled for Wednesday, February 13, from 2:30-3:30 p.m. in room W308A.

Twitter: @MikeMiliardHITN
Email the writer: mike.miliard@himssmedia.com

Healthcare IT News is a publication of HIMSS Media.


Credit: Google News

Previous Post

DNC says Russia tried to hack its servers again in November 2018

Next Post

The AI Market Is Growing, But How Quickly Is Tough To Pin Down

Related Posts

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors
Machine Learning

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors

April 12, 2021
Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning
Machine Learning

Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

April 11, 2021
Why Machine Learning Over Artificial Intelligence?
Machine Learning

Why Machine Learning Over Artificial Intelligence?

April 11, 2021
27 million galaxy morphologies quantified and cataloged with the help of machine learning
Machine Learning

27 million galaxy morphologies quantified and cataloged with the help of machine learning

April 11, 2021
Machine learning and big data needed to learn the language of cancer and Alzheimer’s
Machine Learning

Machine learning and big data needed to learn the language of cancer and Alzheimer’s

April 11, 2021
Next Post
The AI Market Is Growing, But How Quickly Is Tough To Pin Down

The AI Market Is Growing, But How Quickly Is Tough To Pin Down

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Interpretive Analytics in One Picture
Data Science

Interpretive Analytics in One Picture

April 12, 2021
AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors
Machine Learning

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors

April 12, 2021
Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning
Machine Learning

Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

April 11, 2021
Why Machine Learning Over Artificial Intelligence?
Machine Learning

Why Machine Learning Over Artificial Intelligence?

April 11, 2021
27 million galaxy morphologies quantified and cataloged with the help of machine learning
Machine Learning

27 million galaxy morphologies quantified and cataloged with the help of machine learning

April 11, 2021
Machine learning and big data needed to learn the language of cancer and Alzheimer’s
Machine Learning

Machine learning and big data needed to learn the language of cancer and Alzheimer’s

April 11, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Interpretive Analytics in One Picture April 12, 2021
  • AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors April 12, 2021
  • Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning April 11, 2021
  • Why Machine Learning Over Artificial Intelligence? April 11, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates