Sunday, April 11, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Machine Learning Uncovers New Insights into the Human Brain

January 14, 2019
in Machine Learning
Machine Learning Uncovers New Insights into the Human Brain
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: Google News

Assistant Professor Thomas Yeo from the National University of Singapore led an inter-disciplinary research team to uncover new insights into the cellular architecture of the human brain. Credit: National University of Singapore

You might also like

Can a Machine Learning Model Predict T2D?

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

IBM releases Qiskit modules that use quantum computers to improve machine learning

An inter-disciplinary research team led by scientists from the National University of Singapore (NUS) has successfully employed machine learning to uncover new insights into the cellular architecture of the human brain. 

The team demonstrated an approach that automatically estimates parameters of the brain using data collected from functional magnetic resonance imaging (fMRI), enabling neuroscientists to infer the cellular properties of different brain regions without probing the brain using surgical means. This approach could potentially be used to assess treatment of neurological disorders, and to develop new therapies.

“The underlying pathways of many diseases occur at the cellular level, and many pharmaceuticals operate at the microscale level. To know what really happens at the innermost levels of the human brain, it is crucial for us to develop methods that can delve into the depths of the brain non-invasively,” said team leader Assistant Professor Thomas Yeo, who is from the Singapore Institute for Neurotechnology (SINAPSE) at NUS, and the A*STAR-NUS Clinical Imaging Research Centre (CIRC). 

The new study, conducted in collaboration with researchers from the Netherlands and Spain was first reported online in scientific journal Science Advances on 9 January 2019.

Unravelling the complexity of the human brain

The brain is the most intricate organ of the human body, and it is made up of 100 billion nerve cells that are in turn connected to around 1,000 others. Any damage or disease affecting even the smallest part of the brain could lead to severe impairment.

Currently, most human brain studies are limited to non-invasive approaches, such as magnetic resonance imaging (MRI). This limits the examination of the human brain at the cellular level, which may offer novel insights into the development, and potential treatment, of various neurological diseases.  

Different research teams around the world have harnessed biophysical modelling to bridge this gap between non-invasive imaging and cellular understanding of the human brain. The biophysical brain models could be used to simulate brain activity, enabling neuroscientists to gain insights into the brain. However, many of these models rely on overly simplistic assumptions, such as, all brain regions have the same cellular properties, which scientists have known to be false for more than 100 years.

Constructing virtual brain models

Asst Prof Yeo and his team worked with researchers from Universitat Pompeu Fabra, Universitat Barcelona and University Medical Center Utrecht to analyse imaging data from 452 participants of the Human Connectome Project. Departing from previous modelling work, they allowed each brain region to have distinct cellular properties and exploited machine learning algorithms to automatically estimate the model parameters. 

“Our approach achieves a much better fit with real data. Furthermore, we discovered that the micro-scale model parameters estimated by the machine learning algorithm reflect how the brain processes information,” said Dr Peng Wang, who is the first author of the paper, and had conducted the study when he was a postdoctoral researcher in Asst Prof Yeo’s team. 

The research team found that brain regions involved in sensory perception, such as vision, hearing and touch, exhibit cellular properties opposite from brain regions involved in internal thought and memories. The spatial pattern of the human brain’s cellular architecture closely reflects how the brain hierarchically processes information from the surroundings. This form of hierarchical processing is a key feature of both the human brain and recent advances in artificial intelligence. 

“Our study suggests that the processing hierarchy of the brain is supported by micro-scale differentiation among its regions, which may provide further clues for breakthroughs in artificial intelligence,” said Asst Prof Yeo, who is also with the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering. 

Next steps

Moving forward, the NUS team plans to apply their approach to examine the brain data of individual participants, to better understand how individual variation in the brain’s cellular architecture may relate to differences in cognitive abilities. The team hopes that these latest results can be a step towards the development of individualised treatment plans with specific drugs or brain stimulation strategies.

This article has been republished from materials provided by the National University of Singapore. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference: Wang, P., Kong, R., Kong, X., Liégeois, R., Orban, C., Deco, G., … Yeo, B. T. T. (2019). Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Science Advances, 5(1), eaat7854. https://doi.org/10.1126/sciadv.aat7854


Credit: Google News

Previous Post

Cleansing, processing, and visualizing a data set, Part 3: Visualizing data

Next Post

Microsoft: We've fixed Windows 7 'Not genuine' and network share issues

Related Posts

Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
IBM releases Qiskit modules that use quantum computers to improve machine learning
Machine Learning

IBM releases Qiskit modules that use quantum computers to improve machine learning

April 10, 2021
One-stop machine learning platform turns health care data into insights | MIT News
Machine Learning

One-stop machine learning platform turns health care data into insights | MIT News

April 10, 2021
Machine learning: is there a limit to technological patents in Brazil?
Machine Learning

Disclosing AI Inventions – Part I: Identifying the Unique Disclosure Issues

April 10, 2021
Next Post
Microsoft: We’ve fixed Windows 7 ‘Not genuine’ and network share issues

Microsoft: We've fixed Windows 7 'Not genuine' and network share issues

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success
Data Science

Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success

April 11, 2021
Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison
Data Science

Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison

April 10, 2021
IBM releases Qiskit modules that use quantum computers to improve machine learning
Machine Learning

IBM releases Qiskit modules that use quantum computers to improve machine learning

April 10, 2021
Hackers Tampered With APKPure Store to Distribute Malware Apps
Internet Privacy

Hackers Tampered With APKPure Store to Distribute Malware Apps

April 10, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Can a Machine Learning Model Predict T2D? April 11, 2021
  • Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success April 11, 2021
  • Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU April 10, 2021
  • Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison April 10, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates