Thursday, March 4, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Machine learning technique speeds up crystal structure determination

January 31, 2020
in Machine Learning
Machine learning technique speeds up crystal structure determination
590
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter
Illustration of the inner workings of a convolutional neural network that computes the probability that the input diffraction pattern belongs to a given class (e.g. Bravais lattice or space group). Credit: Vecchio lab/Science

Nanoengineers at the University of California San Diego have developed a computer-based method that could make it less labor-intensive to determine the crystal structures of various materials and molecules, including alloys, proteins and pharmaceuticals. The method uses a machine learning algorithm, similar to the type used in facial recognition and self-driving cars, to independently analyze electron diffraction patterns, and do so with at least 95% accuracy.


You might also like

Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs

6 Ways Machine Learning Can Improve Supply Chain’s Bottom Line

This Protein Therapeutics Company Integrates Wet Lab For High-Speed Characterization With Machine Learning Technologies To Guide The Search For Better Antibodies

The work is published in the Jan. 31 issue of Science.

A team led by UC San Diego nanoengineering professor Kenneth Vecchio and his Ph.D. student Kevin Kaufmann, who is the first author of the paper, developed the new approach. Their method involves using a scanning electron microscope (SEM) to collect electron backscatter diffraction (EBSD) patterns. Compared to other electron diffraction techniques, such as those in transmission electron microscopy (TEM), SEM-based EBSD can be performed on large samples and analyzed at multiple length scales. This provides local sub-micron information mapped to centimeter scales. For example, a modern EBSD system enables determination of fine-scale grain structures, crystal orientations, relative residual stress or strain, and other information in a single scan of the sample.

However, the drawback of commercial EBSD systems is the software’s inability to determine the atomic structure of the crystalline lattices present within the material being analyzed. This means a user of the commercial software must select up to five crystal structures presumed to be in the sample and then the software attempts to find probable matches to the diffraction pattern. The complex nature of the diffraction pattern often causes the software to find false structure matches in the user selected list. As a result, the accuracy of the existing software’s determination of the lattice type is dependent on the operator’s experience and prior knowledge of their sample.

The method that Vecchio’s team developed does this all autonomously, as the deep neural network independently analyzes each diffraction pattern to determine the crystal lattice, out of all possible lattice structure types, with a high degree of accuracy (greater than 95%).

A wide range of research areas including pharmacology, structural biology, and geology are expected to benefit from using similar automated algorithms to reduce the amount of time required for crystal structural identification, researchers said.


An improved method for protein crystal structure visualization


More information:
K. Kaufmann el al., “Crystal symmetry determination in electron diffraction using machine learning,” Science (2020). science.sciencemag.org/cgi/doi … 1126/science.aay3062

Provided by
University of California – San Diego

Citation:
Machine learning technique speeds up crystal structure determination (2020, January 30)
retrieved 30 January 2020
from https://phys.org/news/2020-01-machine-technique-crystal.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.


Credit: Google News

Previous Post

Online Streaming Pollutes, Can AI Help?

Next Post

StreamSets grants ecosystem validation to Microsoft SQL Server 2019

Related Posts

Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs
Machine Learning

Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs

March 3, 2021
6 Ways Machine Learning Can Improve Supply Chain’s Bottom Line
Machine Learning

6 Ways Machine Learning Can Improve Supply Chain’s Bottom Line

March 3, 2021
This Protein Therapeutics Company Integrates Wet Lab For High-Speed Characterization With Machine Learning Technologies To Guide The Search For Better Antibodies
Machine Learning

This Protein Therapeutics Company Integrates Wet Lab For High-Speed Characterization With Machine Learning Technologies To Guide The Search For Better Antibodies

March 3, 2021
Yum! Brands Acquires AI Company
Machine Learning

Yum! Brands Acquires AI Company

March 3, 2021
Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha
Machine Learning

Cloudera: An Enterprise-Level Play On Machine Learning And Big Data – Seeking Alpha

March 3, 2021
Next Post
Company discovered it was hacked after a server ran out of free space

StreamSets grants ecosystem validation to Microsoft SQL Server 2019

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

13 challenges creating an open, scalable, and secure serverless platform – IBM Developer
Technology Companies

13 challenges creating an open, scalable, and secure serverless platform – IBM Developer

March 4, 2021
Ursnif Trojan has targeted over 100 Italian banks
Internet Security

Ursnif Trojan has targeted over 100 Italian banks

March 4, 2021
Hackers Now Hiding ObliqueRAT Payload in Images to Evade Detection
Internet Privacy

Hackers Now Hiding ObliqueRAT Payload in Images to Evade Detection

March 4, 2021
Streamlining data science with open source: Data version control and continuous machine learning
Big Data

Streamlining data science with open source: Data version control and continuous machine learning

March 4, 2021
Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs
Machine Learning

Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs

March 3, 2021
The TensorFlow Certification: get official recognition, but it’s hard! | by Keenan Moukarzel | Feb, 2021
Neural Networks

The TensorFlow Certification: get official recognition, but it’s hard! | by Keenan Moukarzel | Feb, 2021

March 3, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • 13 challenges creating an open, scalable, and secure serverless platform – IBM Developer March 4, 2021
  • Ursnif Trojan has targeted over 100 Italian banks March 4, 2021
  • Hackers Now Hiding ObliqueRAT Payload in Images to Evade Detection March 4, 2021
  • Streamlining data science with open source: Data version control and continuous machine learning March 4, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates