Saturday, February 27, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Machine learning predicts schizophrenia relapses using smartphone data

October 15, 2020
in Machine Learning
Machine learning predicts schizophrenia relapses using smartphone data
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

A pair of newly published studies are demonstrating how passive smartphone data can be used to effectively predict relapse episodes in schizophrenia patients. The research used machine learning to analyze behavioral data and predict schizophrenic relapses up to one month before they occurred.

The data used in both new papers was gathered from a cohort of 60 subjects with schizophrenia. Passive smartphone data, such as accelerometer readings and phone call metadata (such as frequency of calls and durations) was captured for the entire cohort. Eighteen of the subjects suffered a schizophrenic relapse during the course of the study.

You might also like

An Epic cognitive computing platform primer

AI and machine learning to help global battle with cancer

How Artificial Intelligence, Machine Learning will further advance Ed-tech sector?

A type of machine learning, dubbed encoder-decoder neural networks, was then used to analyzed the mass of data looking for anomalous behavioral patterns within 30 days of a major relapse. The results revealed an 108 percent increase in behavior anomalies could be detected in the month leading up to a relapse, suggesting this kind of system may be useful for detecting and treating patients before a major schizophrenic episode arises.

“We tried to create an approach where we could tell a clinician: not only is this participant experiencing unusual behavior, these are the specific things that are different in this particular patient,” says Dan Adler, a researcher from Cornell Tech working on the project. “If we can predict when someone’s symptoms are going to change before relapse, we can get them early treatment and possibly prevent an inpatient visit.”

As well as predicting relapses ahead of time, the system could effectively predict patients’ self-assessments of their conditions. And a more granular analysis of the data revealed fine-grained symptom changes could also be predicted.

Different kinds of behavioral patterns, as tracked through passive smartphone data, could be associated with specific symptom characteristics. One of the papers, published in the journal Scientific Reports, strikingly presents a hypothetical scenario whereby the system itself could conceivably intervene in real-time to help guide subjects toward behavioral patterns that prevent a looming relapse.

“For example, if there is an unusual change in the ultradian rhythm of environment noise for a couple of hours, the system can prompt the patient to move to an environment that has a lower and more stable level of ambient noise to prevent the noise from affecting the patients’ cognitive performance,” the researchers write. “If the system notices that the patient’s phone usage in certain periods, for example in evening, has a very different pattern than in other periods (morning and afternoon), the system can intervene to change the patient’s phone usage pattern, delaying the arrival of phone notifications for instance, to avoid an increase in stress.”

Tanzeem Choudhury, from Cornell Tech and co-author on both of the new papers, suggests the system developed could be appropriated for many mental health conditions. Even major depressive episodes, he suggests, could be predicted ahead of time by passively tracking extreme behavioral changes.

“By focusing on changes in behavioral routines and misalignment with underlying biological rhythms, we expect our approach to generate clinically actionable insights that generalize across a diverse demographic of users,” says Choudhury.

The new studies were published in the journals Scientific Reports and the Journal of Medical Internet Research mHealth and uHealth.

Source: Cornell Chronicle


Credit: Google News

Previous Post

Covid-19: Correlation Between Confirmed Cases and Deaths | by George Pipis | Oct, 2020

Next Post

Accurics raises funding for self-healing cloud infrastructure

Related Posts

An Epic cognitive computing platform primer
Machine Learning

An Epic cognitive computing platform primer

February 27, 2021
AI and machine learning to help global battle with cancer
Machine Learning

AI and machine learning to help global battle with cancer

February 26, 2021
How Artificial Intelligence, Machine Learning will further advance Ed-tech sector?
Machine Learning

How Artificial Intelligence, Machine Learning will further advance Ed-tech sector?

February 26, 2021
Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU
Machine Learning

Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU

February 26, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning tool facilitates analysis of health information, clinical forecasting

February 26, 2021
Next Post
Accurics raises funding for self-healing cloud infrastructure

Accurics raises funding for self-healing cloud infrastructure

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Chrome will soon try HTTPS first when you type an incomplete URL
Internet Security

Chrome will soon try HTTPS first when you type an incomplete URL

February 27, 2021
Cisco Releases Security Patches for Critical Flaws Affecting its Products
Internet Privacy

Cisco Releases Security Patches for Critical Flaws Affecting its Products

February 27, 2021
Levels of Measurement (Nominal, Ordinal, Interval, Ratio) in Statistics
Data Science

Levels of Measurement (Nominal, Ordinal, Interval, Ratio) in Statistics

February 27, 2021
An Epic cognitive computing platform primer
Machine Learning

An Epic cognitive computing platform primer

February 27, 2021
Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021
Neural Networks

Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021

February 27, 2021
Take our martech survey: Friday’s daily brief
Digital Marketing

Take our martech survey: Friday’s daily brief

February 27, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Chrome will soon try HTTPS first when you type an incomplete URL February 27, 2021
  • Cisco Releases Security Patches for Critical Flaws Affecting its Products February 27, 2021
  • Levels of Measurement (Nominal, Ordinal, Interval, Ratio) in Statistics February 27, 2021
  • An Epic cognitive computing platform primer February 27, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates