Monday, April 19, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Machine-learning helps sort out massive MOF materials’ databases

September 16, 2020
in Machine Learning
Machine-learning helps sort out massive MOF materials’ databases
587
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter
Sep 16, 2020

(Nanowerk News) Metal-organic frameworks (MOFs) are a class of materials that contain nano-sized pores. These pores give MOFs record-breaking internal surface areas, which can measure up to 7,800 m2 in a single gram of material. As a result, MOFs are extremely versatile and find multiple uses: separating petrochemicals and gases, mimicking DNA, producing hydrogen, and removing heavy metals, fluoride anions, and even gold from water are just a few examples. Because of their popularity, material scientists have been rapidly developing, synthesizing, studying, and cataloguing MOFs. Currently, there are over 90,000 MOFs published, and the number grows every day. Though exciting, the sheer number of MOFs is actually creating a problem: “If we now propose to synthesize a new MOF, how can we know if it is truly a new structure and not some minor variation of a structure that has already been synthesized?” asks Professor Berend Smit at EPFL Valais-Wallis, which houses a major chemistry department. To address the issue, Smit teamed up with Professor Heather J. Kulik at MIT, and used machine learning to develop a “language” for comparing two materials and quantifying the differences between them. The study is published in Nature Communications (“Understanding the diversity of the metal-organic framework ecosystem”). Armed with their new “language”, the researchers set off to explore the chemical diversity in MOF databases. “Before, the focus was on the number of structures,” says Smit. “But now, we discovered that the major databases have all kinds of bias towards particular structures. There is no point in carrying out expensive screening studies on similar structures. One is better off in carefully selecting a set of very diverse structures, which will give much better results with far fewer structures.” Another interesting application is “scientific archeology”: The researchers used their machine-learning system to identify the MOF structures that, at the time of the study, were published as very different from the ones that are already known. “So we now have a very simple tool that can tell an experimental group how different their novel MOF is compared to the 90,000 other structures already reported,” says Smit.

Credit: Google News

You might also like

Machine Learning Helps Optimize Therapeutic Antibodies

Researchers at MIT DAI Lab Have Recently Built Cardea: A Machine Learning Framework That Turns Health Care Data Into Insights

Automating Drug Discovery With Machine Learning

Previous Post

New MrbMiner malware has infected thousands of MSSQL databases

Next Post

2 Hackers Charged for Defacing Sites after U.S. Airstrike Killed Iranian General

Related Posts

Machine Learning Helps Optimize Therapeutic Antibodies
Machine Learning

Machine Learning Helps Optimize Therapeutic Antibodies

April 18, 2021
Researchers at MIT DAI Lab Have Recently Built Cardea: A Machine Learning Framework That Turns Health Care Data Into Insights
Machine Learning

Researchers at MIT DAI Lab Have Recently Built Cardea: A Machine Learning Framework That Turns Health Care Data Into Insights

April 18, 2021
Automating Drug Discovery With Machine Learning
Machine Learning

Automating Drug Discovery With Machine Learning

April 18, 2021
Twitter aims to fight bias by examining its own machine learning algorithms
Machine Learning

Twitter aims to fight bias by examining its own machine learning algorithms

April 18, 2021
Make Machine Learning Interpretable with Shapash
Machine Learning

Make Machine Learning Interpretable with Shapash

April 18, 2021
Next Post
2 Hackers Charged for Defacing Sites after U.S. Airstrike Killed Iranian General

2 Hackers Charged for Defacing Sites after U.S. Airstrike Killed Iranian General

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Machine Learning Helps Optimize Therapeutic Antibodies
Machine Learning

Machine Learning Helps Optimize Therapeutic Antibodies

April 18, 2021
Researchers at MIT DAI Lab Have Recently Built Cardea: A Machine Learning Framework That Turns Health Care Data Into Insights
Machine Learning

Researchers at MIT DAI Lab Have Recently Built Cardea: A Machine Learning Framework That Turns Health Care Data Into Insights

April 18, 2021
Automating Drug Discovery With Machine Learning
Machine Learning

Automating Drug Discovery With Machine Learning

April 18, 2021
Twitter aims to fight bias by examining its own machine learning algorithms
Machine Learning

Twitter aims to fight bias by examining its own machine learning algorithms

April 18, 2021
Make Machine Learning Interpretable with Shapash
Machine Learning

Make Machine Learning Interpretable with Shapash

April 18, 2021
Why the Patent Classification System Needs an Update
Machine Learning

Why the Patent Classification System Needs an Update

April 18, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Machine Learning Helps Optimize Therapeutic Antibodies April 18, 2021
  • Researchers at MIT DAI Lab Have Recently Built Cardea: A Machine Learning Framework That Turns Health Care Data Into Insights April 18, 2021
  • Automating Drug Discovery With Machine Learning April 18, 2021
  • Twitter aims to fight bias by examining its own machine learning algorithms April 18, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates