Sunday, February 28, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Neural Networks

Machine Learning Concepts Every Data Scientist Should Know | by thecleverprogrammer.com | Jul, 2020

July 25, 2020
in Neural Networks
Machine Learning Concepts Every Data Scientist Should Know | by thecleverprogrammer.com | Jul, 2020
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter
Source

Machine Learning is a Very Broad Field. If Machine Learning is a dish, then linear algebra, programming, analytical skills, statistics, and Algorithms are the primary recipes of Machine Learning. If you will go more deep inside the Machine Learning concepts, you will get confused about what to learn first or what to not focus much. So here, In this article, I will take you through the most important Machine Learning Concepts, which you need to keep as must-know concepts in machine learning.

All Machine Learning concepts, that I have shown below are not based on the order of their rank or weightage in Machine Learning. Just keep in mind that every concept is more important than the others. So while learning Machine Learning you just can’t miss these concepts:

You might also like

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS

Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021

Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021

A sequence of data processing components is called a Data Pipeline. Pipelines are very common in Machine Learning systems since there is a lot of data to manipulate and many data transformations to applying.

Components typically run asynchronously. Each component pulls in a large amount of data, processes it, and splits out the result in another data store. Then, sometime later, the next component in the pipeline pulls this data and splits out its output. Each component is fairly self-contained: the interface between components is simply the data store.

This makes a system to grasp, and different teams can focus on different components. Moreover, if a component breaks down, the downstream components can often continue to run normally by just using the last output from the broken component. This makes the architecture quite robust. You can learn to create pipeline and some more machine learning concepts of creating pipelines from here.

Artificial Intelligence Jobs

One way to evaluate your machine learning model would be to use the train_test_split() function to split the training set into a smaller test set and a validation set, then train your models against the test set and evaluate them against the validation set. It’s a bit of work, but nothing too difficult, and it would work fairly well.

A great alternative is to use the cross-validation feature provided by Scikit-Learn. Cross-Validation works by splitting the training set into 10 distinct subsets called folds, then it trains and evaluates a Machine Learning model 10 times, picking a different fold for evaluation every time and training on the other 9 folds. I implement cross-validation in most of the tasks. You can learn to use cross-validation and some more machine learning concepts of it from here.

One option would be to fiddle with the hyperparameters manually until you find a great combination of hyperparameter values. This would be very tedious work, and you may have time to explore many combinations.

1. Natural Language Generation: The Commercial State of the Art in 2020

2. This Entire Article Was Written by Open AI’s GPT2

3. Learning To Classify Images Without Labels

4. Becoming a Data Scientist, Data Analyst, Financial Analyst and Research Analyst

Instead, you should get Scikit-Learn’s GridSearchCV to search for you. All you need to do is tell it which hyperparameters you want it to experiment which and what values to try out, and it will use cross-validation to evaluate all the possible combinations of hyperparameter values. You can learn to use the Grid Search Algorithm and some more machine learning concepts of it from here.

If you are using Scikit-Learn, you can easily use a lot of algorithms that are already made by some famous Researchers, Data Scientists, and other Machine Learning experts. Have you ever thought of building your algorithm instead of using a module like Scikit-Learn?

All the Machine Learning Algorithms that Scikit-Learn provides are easy to use but to be a Machine Learning Expert in a brand like Google and Microsoft, you need to build your algorithms instead of using any package so that you could easily create an algorithm according to your needs. You can learn to create your own algorithms and some fore machine learning concepts about building your own algorithm from here.

I have trained and developed a lot of Machine Learning models, if you are a student in Machine Learning, you must have also developed models. When you train a machine learning model, also think about how you will deploy a machine learning model to serve your trained model to the available users. You will get a lot of websites who are teaching to train a machine learning model but nobody goes beyond to deploy a machine learning model. Because training and deploying a machine learning model are very different from each other. But it’s not difficult.

Training a model is the most important part of machine learning. But deploying a model is a different art because you have to think a lot in the process of how you will make your machine learning application to your users. You can learn to Deploy a machine learning model and some more machine learning concepts of deploying a model from here.

I hope you liked this article on the Machine Learning concepts that every Data Scientist should know.

Credit: BecomingHuman By: thecleverprogrammer.com

Previous Post

CouchSurfing investigates data breach after 17m user records appear on hacking forum

Next Post

Top Machine Learning Algorithms, Frameworks, Tools and Products Used by Data Scientists

Related Posts

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS
Neural Networks

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS

February 27, 2021
Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021
Neural Networks

Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021

February 27, 2021
Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021
Neural Networks

Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021

February 27, 2021
Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal
Neural Networks

Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal

February 26, 2021
How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS
Neural Networks

How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS

February 26, 2021
Next Post
Top Machine Learning Algorithms, Frameworks, Tools and Products Used by Data Scientists

Top Machine Learning Algorithms, Frameworks, Tools and Products Used by Data Scientists

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

New AI Machine Learning Reduces Mental Health Misdiagnosis
Machine Learning

Machine Learning May Reduce Mental Health Misdiagnosis

February 28, 2021
Why would you ever trust Amazon’s Alexa after this?
Internet Security

Why would you ever trust Amazon’s Alexa after this?

February 28, 2021
AI & ML Are Not Same. Here's Why – Analytics India Magazine
Machine Learning

AI & ML Are Not Same. Here's Why – Analytics India Magazine

February 27, 2021
Microsoft: We’ve open-sourced this tool we used to hunt for code by SolarWinds hackers
Internet Security

Microsoft: We’ve open-sourced this tool we used to hunt for code by SolarWinds hackers

February 27, 2021
Is Wattpad and its machine learning tool the future of TV? — Quartz
Machine Learning

Is Wattpad and its machine learning tool the future of TV? — Quartz

February 27, 2021
Oxford University lab with COVID-19 research links targeted by hackers
Internet Security

Oxford University lab with COVID-19 research links targeted by hackers

February 27, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Machine Learning May Reduce Mental Health Misdiagnosis February 28, 2021
  • Why would you ever trust Amazon’s Alexa after this? February 28, 2021
  • AI & ML Are Not Same. Here's Why – Analytics India Magazine February 27, 2021
  • Microsoft: We’ve open-sourced this tool we used to hunt for code by SolarWinds hackers February 27, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates