Friday, February 26, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

Loop-Runtime Comparison R, RCPP, Python

September 2, 2019
in Data Science
Loop-Runtime Comparison R, RCPP, Python
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

The positive reactions on my last post: “Different kinds of loops in R” lead me to compare some different versions of loops in R, RCPP (C++ integration of R). To see a bigger picture, I apply the Python for-loop additionally. The comparison focuses on the runtime for non-costly tasks with different numbers of iterations. For comparison purpose I create vectors in the form of (R syntax):

Vector <- 1:k

You might also like

How Machine Learning Discretely Assists Data Scientists

A Plethora of Machine Learning Articles: Part 1

AI Chatbot Platforms: The Best in the Market and Why to Consider

k = (1.000, 100.000, 1.000.000)

 

The task is to calculate a vector of (k-1) growth rates. I use a i7 8700k with 6 cores divided in two virtual cores each with Windows 10, 16 GB GDDR5.

I use the R-native for-loop, the sapply-loop, but also the parSapply-loop and RCPP like explained in “Different kinds of loops in R”. Additionally, I add the purrr::map() and the furrr::future_map functions.

The “purrr” package provides very flexible functional map() orders which can be used as loops. The “furrr” package is similar. It provides the same orders but with the option to use them in parallel.

For parallel use, you must change the default plan(sequential) to plan(multisession) in advance.

For comparison I use the mean of the elapsed time of 100 repetitions.

So, let´s check the results:

Note that the runtime is highly dependent from the complexity of each iteration. Therefore, the results merely count for this application or comparable applications. For a higher complexity I recommend parallel computing or C++.

C++ is the clear winner. For this task, the Python and the R for-loops are similar. The functional solutions – in particular the parallel applications – are better for more complex computations. The parallel solutions use more memory because they assign one R-session to one thread.


Credit: Data Science Central By: Frank Raulf

Previous Post

4 Ways Machine Learning Helps Businesses Grow

Next Post

How MuleSoft patched a critical security flaw and avoided a disaster

Related Posts

How Machine Learning Discretely Assists Data Scientists
Data Science

How Machine Learning Discretely Assists Data Scientists

February 24, 2021
A Plethora of Machine Learning Articles: Part 1
Data Science

A Plethora of Machine Learning Articles: Part 1

February 24, 2021
What are Data Pipelines ?
Data Science

AI Chatbot Platforms: The Best in the Market and Why to Consider

February 24, 2021
Modernizing Data Dashboards. – Data Science Central
Data Science

Modernizing Data Dashboards. – Data Science Central

February 24, 2021
4 ways Cryptocurrency is Benefiting the Fintech Industry
Data Science

4 ways Cryptocurrency is Benefiting the Fintech Industry

February 23, 2021
Next Post
How MuleSoft patched a critical security flaw and avoided a disaster

How MuleSoft patched a critical security flaw and avoided a disaster

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Spy agency: Artificial intelligence is already a vital part of our missions
Internet Security

Spy agency: Artificial intelligence is already a vital part of our missions

February 26, 2021
Blockchain lags behind other technologies in finance adoption for now, says Broadridge
Blockchain

Blockchain lags behind other technologies in finance adoption for now, says Broadridge

February 26, 2021
Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design
Machine Learning

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

February 26, 2021
How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS
Neural Networks

How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS

February 26, 2021
21 Must-Know Instagram Facts for 2021
Marketing Technology

21 Must-Know Instagram Facts for 2021

February 26, 2021
Chinese cyberspies targeted Tibetans with a malicious Firefox add-on
Internet Security

Chinese cyberspies targeted Tibetans with a malicious Firefox add-on

February 26, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Spy agency: Artificial intelligence is already a vital part of our missions February 26, 2021
  • Blockchain lags behind other technologies in finance adoption for now, says Broadridge February 26, 2021
  • Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design February 26, 2021
  • How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS February 26, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates