Sunday, March 7, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

Little Blue Pearl – Data Science Central

April 3, 2020
in Data Science
Little Blue Pearl – Data Science Central
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Little Blue Pearl – named after our planet – has kept me occupied for several days during my 14-day Coronavirus isolation. It is fully functional although I suppose it needs a makeover in terms of its appearance. Like a child after summer break, this is going to be my show-and-tell. LBP is designed to process the pandemic data in a particular manner focusing mostly on the number of fatalities.

You might also like

A Plethora of Machine Learning Articles: Part 2

The Effect IoT Has Had on Software Testing

Why Cloud Data Discovery Matters for Your Business

I created LBP because I believe that the new Coronavirus and many other types of dangerous diseases are here to stay. I will make my contribution to prop up our species in one of the few ways I know how. I begin with a normal chart of fatalities. The image below shows the chart for Canada.

LBP first converts the fatality data into a format that can be more easily accessed by a computer algorithm; basically, this means keeping the activity confined within predictable boundaries. I use a metric that I call the Exp-1, which I wrote about actually on the same day that I developed it.

To demonstrate the bounded nature of the converted data, consider the next chart containing triggers using fixed boundaries – as presented on the legend. On this chart – also generated by LBP – beneficial developments are indicated as more and bigger bumps appear on the top. The opposite is true if the bumps are on the bottom.

LBP’s primary mission is to determine the impacts of qualitative events on the quantitative metric. On the gradient of the chart below, the greatest amount of benefit occurs when the pattern is on the left. The particular event in question therefore seems associated with minimal benefit.

The crosswave pattern chart attempts to show relative benefit: e.g. are we better or worse off implementing or having the event? The chart shows that based on the data available, it seems we were better off not implementing or having the event. The legend explains the chart to some extent: UT-f = untreated forward; UT-b = untreated backwards; TR-f = treated forward; and TR-b = treated backwards. I have written about the crosswave differential over the years. I will just note at this point that it has been tested using controlled simulations.

The more specific or focused the data and events, the easier it is to determine and especially explain the connection. The particular event in this case is the stoppage of unnecessary business in Ontario. It should be noted that the stats for the entire country are fairly disassociated from regional and provincial realities: i.e. it might be unfair to evaluate the impacts of the stoppage since the metric is national rather than provincial. I am aware also that many fatalities have been connected to old age homes. It is not for me to question the exact reasons for the outcomes. The LBP merely points to the lack of evidence of effectiveness and possible signs to the contrary.

Possible Reasons for Lack of Effectiveness

There is no reason to question the underlying principle: social distancing is likely to prevent the transmission of disease. However, the event that I used is not about social distancing per se but rather the stoppage of non-essential business, which probably has the effect of directing people towards those operations that are considered essential. Consequently, more people – including those are infected – gravitate towards these essential businesses. Infected individuals (asymptomatic or not) find themselves with few options; this might contribute to the accidental transmission of the disease through these businesses. The so-called incubator effect might therefore not simply be a spatial phenomenon per se but also logistical.  This is only speculation at this point given the absence of both quantitative metrics and qualitative event data.

An institutional solution – such halting non-essential business – can be problematic if the events connected to it cannot be easily associated with the resulting metrics. LBP enables a systematic approach to connect the dots. LBP takes line-by-line event data structured as follows for each line: (this_is_my_event). Theoretically, the number of lines is unimportant. It is therefore possible to incorporate a large amount of non-parametric or category-type data: e.g. codes associated with quality control and compliance checklists. If any jurisdiction would be interested in providing me with event data associated with their Coronavirus experience, I am offering to periodically review their distributions for free. This is meant to help me further develop LBP.


Credit: Data Science Central By: Don Philip Faithful

Previous Post

AI Helping Customer Analytics Dive Deeper into Customer Experience

Next Post

Human rights groups warn governments of privacy laws when tracking COVID-19

Related Posts

A Plethora of Machine Learning Articles: Part 2
Data Science

A Plethora of Machine Learning Articles: Part 2

March 4, 2021
The Effect IoT Has Had on Software Testing
Data Science

The Effect IoT Has Had on Software Testing

March 3, 2021
Why Cloud Data Discovery Matters for Your Business
Data Science

Why Cloud Data Discovery Matters for Your Business

March 2, 2021
DSC Weekly Digest 01 March 2021
Data Science

DSC Weekly Digest 01 March 2021

March 2, 2021
Companies in the Global Data Science Platforms Resorting to Product Innovation to Stay Ahead in the Game
Data Science

Companies in the Global Data Science Platforms Resorting to Product Innovation to Stay Ahead in the Game

March 2, 2021
Next Post
Human rights groups warn governments of privacy laws when tracking COVID-19

Human rights groups warn governments of privacy laws when tracking COVID-19

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Linux distributions: All the talent and hard work that goes into building a good one
Internet Security

Linux distributions: All the talent and hard work that goes into building a good one

March 7, 2021
Enhance your gaming experience with this sound algorithm software
Machine Learning

Enhance your gaming experience with this sound algorithm software

March 7, 2021
Check to see if you’re vulnerable to Microsoft Exchange Server zero-days using this tool
Internet Security

Check to see if you’re vulnerable to Microsoft Exchange Server zero-days using this tool

March 7, 2021
How Optimizing MLOps can Revolutionize Enterprise AI
Machine Learning

How Optimizing MLOps can Revolutionize Enterprise AI

March 6, 2021
Cyberattack shuts down online learning at 15 UK schools
Internet Security

Cyberattack shuts down online learning at 15 UK schools

March 6, 2021
Facebook enhances AI computer vision with SEER
Machine Learning

Facebook enhances AI computer vision with SEER

March 6, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Linux distributions: All the talent and hard work that goes into building a good one March 7, 2021
  • Enhance your gaming experience with this sound algorithm software March 7, 2021
  • Check to see if you’re vulnerable to Microsoft Exchange Server zero-days using this tool March 7, 2021
  • How Optimizing MLOps can Revolutionize Enterprise AI March 6, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates