Saturday, April 17, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Light-Based Processor Chips Advance Machine Learning

January 10, 2021
in Machine Learning
Light-Based Processor Chips Advance Machine Learning
588
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Schematic representation of a processor for matrix multiplications which runs on light. Together with an optical frequency comb, the waveguide crossbar array permits highly parallel data processing. Credit: WWU/AG Pernice

You might also like

Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO

Machine learning models may predict criminal offenses related to psychiatric disorders

How To Ensure Your Machine Learning Models Aren’t Fooled

International team of researchers uses photonic networks for pattern recognition.

In the digital age, data traffic is growing at an exponential rate. The demands on computing power for applications in artificial intelligence such as pattern and speech recognition in particular, or for self-driving vehicles, often exceeds the capacities of conventional computer processors. Working together with an international team, researchers at the University of Münster are developing new approaches and process architectures that can cope with these tasks extremely efficiently. They have now shown that so-called photonic processors, with which data is processed by means of light, can process information much more rapidly and in parallel — something electronic chips are incapable of doing. The results have been published in the journal Nature.

Background and methodology

Light-based processors for speeding up tasks in the field of machine learning enable complex mathematical tasks to be processed at enormously fast speeds (10¹² -10¹⁵ operations per second). Conventional chips such as graphic cards or specialized hardware like Google’s TPU (Tensor Processing Unit) are based on electronic data transfer and are much slower. The team of researchers led by Prof. Wolfram Pernice from the Institute of Physics and the Center for Soft Nanoscience at the University of Münster implemented a hardware accelerator for so-called matrix multiplications, which represent the main processing load in the computation of neural networks. Neural networks are a series of algorithms which simulate the human brain. This is helpful, for example, for classifying objects in images and for speech recognition.

The researchers combined the photonic structures with phase-change materials (PCMs) as energy-efficient storage elements. PCMs are usually used with DVDs or BluRay discs in optical data storage. In the new processor, this makes it possible to store and preserve the matrix elements without the need for an energy supply. To carry out matrix multiplications on multiple data sets in parallel, the Münster physicists used a chip-based frequency comb as a light source. A frequency comb provides a variety of optical wavelengths which are processed independently of one another in the same photonic chip. As a result, this enables highly parallel data processing by calculating on all wavelengths simultaneously – also known as wavelength multiplexing. “Our study is the first one to apply frequency combs in the field of artificially neural networks,” says Wolfram Pernice.

In the experiment the physicists used a so-called convolutional neural network for the recognition of handwritten numbers. These networks are a concept in the field of machine learning inspired by biological processes. They are used primarily in the processing of image or audio data, as they currently achieve the highest accuracies of classification. “The convolutional operation between input data and one or more filters – which can be a highlighting of edges in a photo, for example – can be transferred very well to our matrix architecture,” explains Johannes Feldmann, the lead author of the study. “Exploiting light for signal transference enables the processor to perform parallel data processing through wavelength multiplexing, which leads to a higher computing density and many matrix multiplications being carried out in just one timestep. In contrast to traditional electronics, which usually work in the low GHz range, optical modulation speeds can be achieved with speeds up to the 50 to 100 GHz range.” This means that the process permits data rates and computing densities, i.e. operations per area of processor, never previously attained.

The results have a wide range of applications. In the field of artificial intelligence, for example, more data can be processed simultaneously while saving energy. The use of larger neural networks allows more accurate, and hitherto unattainable, forecasts and more precise data analysis. For example, photonic processors support the evaluation of large quantities of data in medical diagnoses, for instance in high-resolution 3D data produced in special imaging methods. Further applications are in the fields of self-driving vehicles, which depend on fast, rapid evaluation of sensor data, and of IT infrastructures such as cloud computing which provide storage space, computing power or applications software.

For more on this research, read AI Boosted by Parallel Convolutional Light-Based Processors.

Reference: “Parallel convolutional processing using an integrated photonic tensor core” by J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice and H. Bhaskaran, 6 January 2021, Nature.
DOI: 10.1038/s41586-020-03070-1

Research partners: In addition to researchers at the University of Münster, scientists at the Universities of Oxford and Exeter in England, the University of Pittsburgh, USA, the École Polytechnique Fédérale (EPFL) in Lausanne, Switzerland, and the IBM research laboratory in Zurich were also involved in this work.

Funding: The study received financial support from the EU project “FunComp” and from the European Research Council (ERC Grant “PINQS”).


Credit: Google News

Previous Post

Nvidia releases security update for high-severity graphics driver vulnerabilities

Next Post

Ninja Cookie: This browser extension is the ultimate productivity hack

Related Posts

Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO
Machine Learning

Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO

April 17, 2021
Machine learning approach identifies more than 400 genes tied to schizophrenia
Machine Learning

Machine learning models may predict criminal offenses related to psychiatric disorders

April 16, 2021
How To Ensure Your Machine Learning Models Aren’t Fooled
Machine Learning

How To Ensure Your Machine Learning Models Aren’t Fooled

April 16, 2021
Scientists use machine learning to classify millions of new galaxies
Machine Learning

Scientists use machine learning to classify millions of new galaxies

April 16, 2021
Machine learning algorithm predicts risk for suicide attempt
Machine Learning

New machine learning method for designing more effective antibody drugs

April 16, 2021
Next Post
Ninja Cookie: This browser extension is the ultimate productivity hack

Ninja Cookie: This browser extension is the ultimate productivity hack

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO
Machine Learning

Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO

April 17, 2021
The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021
Neural Networks

The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021

April 17, 2021
A new collective to fight adtech fraud: Friday’s daily brief
Digital Marketing

A new collective to fight adtech fraud: Friday’s daily brief

April 17, 2021
Cyberattack on UK university knocks out online learning, Teams and Zoom
Internet Security

Cyberattack on UK university knocks out online learning, Teams and Zoom

April 17, 2021
SBI Sumishin Net Bank partners with DLT Labs on supply chain financing network
Blockchain

SBI Sumishin Net Bank partners with DLT Labs on supply chain financing network

April 16, 2021
Machine learning approach identifies more than 400 genes tied to schizophrenia
Machine Learning

Machine learning models may predict criminal offenses related to psychiatric disorders

April 16, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO April 17, 2021
  • The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021 April 17, 2021
  • A new collective to fight adtech fraud: Friday’s daily brief April 17, 2021
  • Cyberattack on UK university knocks out online learning, Teams and Zoom April 17, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates