Thursday, January 28, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Identifying compound classes through machine learning — ScienceDaily

November 24, 2020
in Machine Learning
Applying artificial intelligence to science education — ScienceDaily
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Everything that lives has metabolites, produces metabolites and consumes metabolites. These molecules arise as intermediate and end products from chemical processes in an organism’s metabolism. Therefore, they not only have huge significance for our lives, but they also provide valuable information about the condition of a living being or an environment. For example, metabolites can be used to detect diseases or, in the field of environmental technology, to examine drinking water samples. However, the diversity of these chemical compounds causes difficulties in scientific research. To date, only few molecules and their properties are known. If a sample is analysed in the laboratory, only a relatively small proportion of it can be identified, while the majority of molecules remain unknown.

Bioinformaticians at Friedrich Schiller University Jena, Germany together with colleagues from Finland and the USA, have now developed a unique method with which all metabolites in a sample can be taken into account, thus considerably increasing the knowledge gained from examining such molecules. The team reports on its successful research in the scientific journal Nature Biotechnology.

You might also like

Top Trends of Embedded Machine Learning for IoT in 2021

Using AI and Machine Learning to Make Solar Power More Efficient

Smart algorithm cleans up images by searching for clues buried in noise — ScienceDaily

Learning, recognising and assigning structural properties

“Mass spectrometry, one of the most widely used experimental methods for analysing metabolites, identifies only those molecules that can be uniquely assigned by matching them against a database. All other, previously unknown, molecules contained in the sample do not provide much information,” explains Prof. Sebastian Böcker from the University of Jena. “With our newly developed method, called CANOPUS, however, we also obtain valuable insight from the unidentified metabolites in a sample, as we can assign them to existing compound classes.”

CANOPUS works in two phases: first, the method generates a ‘molecular fingerprint’ from the fragmentation spectrum measured by means of mass spectrometry. This contains information about the structural properties of the measured molecule. In the second phase, the method uses the molecular fingerprint to assign the metabolite to a specific compound class without having to identify it.

Learning from the data

“Machine learning methods usually require large amounts of data in order to be trained. In contrast, our two-stage process makes it possible in the first step to train on a comparatively small amount of data of tens of thousands of fragmentation mass spectra. Then, in the second step, the characteristic structural properties that are significant for a compound class can be determined from millions of structures,” explains Dr Kai Dührkop from the University of Jena.

The system therefore identifies these structural properties in an unknown molecule within a sample and then assigns it to a specific compound class. “This information alone is sufficient to answer many important questions,” Böcker emphasises. “The precise identification of a metabolite would be far more complex and is often not necessary at all.” The CANOPUS method uses a deep neural network predicting around 2,500 compound classes.

With their method, the Jena bioinformaticians have compared, for example, the intestinal flora of mice in which one experimental group had been treated with antibiotics. The examinations show which metabolites the mouse and its intestinal flora produce. Such research results can provide important information about the human digestive and metabolic system. Through two further application examples, which they present in their study, the Jena scientists demonstrate the functionality and power of the CANOPUS method.

Jena molecule search engine used millions of times

With the new method, the bioinformaticians from Jena are expanding the possibilities of the search engine for molecular structures “CSI:FingerID,” which they have been making available to the international research community for around five years. Researchers around the world now use this service thousands of times a day to compare a mass spectrum from a sample with various online databases, in order to identify a metabolite more precisely. “We are approaching the one hundred millionth request and we are sure that CANOPUS will further increase the number of users,” says Sebastian Böcker.

The new process strengthens the field of metabolomics — that is, research on these omnipresent small molecules — and increases its potential in many research areas, such as pharmaceuticals. Many active pharmaceutical substances in use for decades, such as penicillin, are metabolites; others could be developed with their help.

Credit: Google News

Previous Post

Convolutional Neural Networks (CNNs / ConvNets) for Visual Recognition | by Sameer Bairwa | Nov, 2020

Next Post

Brazilian government recovers from "worst-ever" cyberattack

Related Posts

Top Trends of Embedded Machine Learning for IoT in 2021
Machine Learning

Top Trends of Embedded Machine Learning for IoT in 2021

January 28, 2021
Using AI and Machine Learning to Make Solar Power More Efficient
Machine Learning

Using AI and Machine Learning to Make Solar Power More Efficient

January 28, 2021
Applying artificial intelligence to science education — ScienceDaily
Machine Learning

Smart algorithm cleans up images by searching for clues buried in noise — ScienceDaily

January 28, 2021
Must Watch Movies on Data Science, Machine Learning and AI – Film Daily
Machine Learning

Must Watch Movies on Data Science, Machine Learning and AI – Film Daily

January 28, 2021
Silicon Labs and Edge Impulse Partner to Accelerate Machine Learning Applications
Machine Learning

Silicon Labs and Edge Impulse Partner to Accelerate Machine Learning Applications

January 28, 2021
Next Post
Brazilian government recovers from “worst-ever” cyberattack

Brazilian government recovers from "worst-ever" cyberattack

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Top Trends of Embedded Machine Learning for IoT in 2021
Machine Learning

Top Trends of Embedded Machine Learning for IoT in 2021

January 28, 2021
How the Pandemic Has Affected ABM Budgets & Goals
Marketing Technology

How the Pandemic Has Affected ABM Budgets & Goals

January 28, 2021
Mozilla: Racism, misinformation, anti-worker policies are ‘undermining’ the Internet
Internet Security

Mozilla: Racism, misinformation, anti-worker policies are ‘undermining’ the Internet

January 28, 2021
Using AI and Machine Learning to Make Solar Power More Efficient
Machine Learning

Using AI and Machine Learning to Make Solar Power More Efficient

January 28, 2021
The Future of B2B Marketing: 4 Areas to Focus On
Marketing Technology

The Future of B2B Marketing: 4 Areas to Focus On

January 28, 2021
Google says iOS privacy summaries will arrive when its apps are updated
Internet Security

Google says iOS privacy summaries will arrive when its apps are updated

January 28, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Top Trends of Embedded Machine Learning for IoT in 2021 January 28, 2021
  • How the Pandemic Has Affected ABM Budgets & Goals January 28, 2021
  • Mozilla: Racism, misinformation, anti-worker policies are ‘undermining’ the Internet January 28, 2021
  • Using AI and Machine Learning to Make Solar Power More Efficient January 28, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates