Sunday, March 7, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Human-machine interface – Data-labelling startups want to help improve corporate AI | Business

October 18, 2019
in Machine Learning
Human-machine interface – Data-labelling startups want to help improve corporate AI | Business
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter
Oct 19th 2019

CORPORATE BOARDS are besotted with artificial intelligence. Worldwide spending on AI is expected to rise from $38bn this year to $98bn by 2023, estimates IDC, a research firm. So far, though, only one in five companies aware of the technology’s potential has incorporated machine learning into its core business. One reason for the slow uptake is the dearth of quality data to teach algorithms to perform useful tasks. The most common form of AI, called “supervised learning”, requires feeding software stacks of pre-tagged examples of, say, cat pictures until it can tell a feline image apart by itself. Data-labelling is the sort of grunt work that corporate AI-users would prefer someone else to do for them. An industry is popping up to help.

The market for data-labelling services may triple to $5bn by 2023, reckons Astasia Myers of Redpoint Ventures, a venture-capital firm. Some outfits, like Mechanical Turk (owned by Amazon, an e-commerce giant), act as middlemen connecting freelancers ready to perform all manner of “micro-tasks”, of which things like tagging pictures is one example, with taskmasters. Other firms specialise. Hive has turned data-labelling into something “like playing Candy Crush”, explains its boss, Kevin Guo, referring to a hit tile-matching game. Its mobile app makes it easy for users to identify objects, earning money instead of points. Its 1.5m players across the world serve more than 100 corporate customers.

You might also like

Researchers at Utrecht University Develop an Open-Source Machine Learning (ML) Framework Called ASReview to Help Researchers Carry Out Systematic Reviews

Why do Machine Learning strategies fail and how to deal with them?

Enhance your gaming experience with this sound algorithm software

Because human data-labelling is labour-intensive, most of it happens in low-wage countries like India, Vietnam and the Philippines. In such places data-labelling “is the easiest way to earn money”, says Hafiz Arslan, a Pakistani software engineer who was recently paid $200 for classifying 4,500 images by the sport they depicted (football, cricket or tennis).

A distributed workforce is, however, prone to human error. That is a problem for AI, which is only as good as the data it learns from. So other startups want progressively to cut humans out of the process. Scale AI, from San Francisco, lets its own algorithms take a first pass at labelling with humans reviewing the work. “We are extremely, extremely quality-conscious,” insists its boss, Alexandr Wang. He says revenues have grown tenfold from a few million dollars last year. Labelbox helps firms gauge the accuracy of labelling.

AI.Reverie goes further, dispensing with human labellers altogether. It uses techniques developed for video games to create and automatically label scenes that can be used to train image-recognition algorithms. Its approach is particularly useful for exposing software to scenarios that might be hard to find in data gleaned from the real world. It can generate scenes set underwater, or featuring heavy fog or torrential rain. The company’s backers include In-Q-Tel, a venture fund for America’s intelligence services.

The industry’s short-term future seems assured. In the longer run a threat may come from developments in “unsupervised learning”, which aims to identify patterns in data that have not been labelled by humans. Manu Sharma, boss of Labelbox, says this remains “primarily an academic pursuit”. How long for is anyone’s guess. ■

This article appeared in the Business section of the print edition under the headline “Data-labelling startups want to help improve corporate AI”

Reuse this contentThe Trust Project

Credit: Google News

Previous Post

Robotic Process Automation (RPA): Automating Your Office Chores

Next Post

Startup Pavilion at AI World Showcases Innovation and Promise

Related Posts

Researchers at Utrecht University Develop an Open-Source Machine Learning (ML) Framework Called ASReview to Help Researchers Carry Out Systematic Reviews
Machine Learning

Researchers at Utrecht University Develop an Open-Source Machine Learning (ML) Framework Called ASReview to Help Researchers Carry Out Systematic Reviews

March 7, 2021
Why do Machine Learning strategies fail and how to deal with them?
Machine Learning

Why do Machine Learning strategies fail and how to deal with them?

March 7, 2021
Enhance your gaming experience with this sound algorithm software
Machine Learning

Enhance your gaming experience with this sound algorithm software

March 7, 2021
How Optimizing MLOps can Revolutionize Enterprise AI
Machine Learning

How Optimizing MLOps can Revolutionize Enterprise AI

March 6, 2021
Facebook enhances AI computer vision with SEER
Machine Learning

Facebook enhances AI computer vision with SEER

March 6, 2021
Next Post
Startup Pavilion at AI World Showcases Innovation and Promise

Startup Pavilion at AI World Showcases Innovation and Promise

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Okta and Auth0: A $6.5 billion bet that identity will warrant its own cloud
Internet Security

Okta and Auth0: A $6.5 billion bet that identity will warrant its own cloud

March 7, 2021
Researchers at Utrecht University Develop an Open-Source Machine Learning (ML) Framework Called ASReview to Help Researchers Carry Out Systematic Reviews
Machine Learning

Researchers at Utrecht University Develop an Open-Source Machine Learning (ML) Framework Called ASReview to Help Researchers Carry Out Systematic Reviews

March 7, 2021
CISA issues emergency directive to agencies: Deal with Microsoft Exchange zero-days now
Internet Security

CISA issues emergency directive to agencies: Deal with Microsoft Exchange zero-days now

March 7, 2021
Why do Machine Learning strategies fail and how to deal with them?
Machine Learning

Why do Machine Learning strategies fail and how to deal with them?

March 7, 2021
Linux distributions: All the talent and hard work that goes into building a good one
Internet Security

Linux distributions: All the talent and hard work that goes into building a good one

March 7, 2021
Enhance your gaming experience with this sound algorithm software
Machine Learning

Enhance your gaming experience with this sound algorithm software

March 7, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Okta and Auth0: A $6.5 billion bet that identity will warrant its own cloud March 7, 2021
  • Researchers at Utrecht University Develop an Open-Source Machine Learning (ML) Framework Called ASReview to Help Researchers Carry Out Systematic Reviews March 7, 2021
  • CISA issues emergency directive to agencies: Deal with Microsoft Exchange zero-days now March 7, 2021
  • Why do Machine Learning strategies fail and how to deal with them? March 7, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates