Thursday, February 25, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

How Will the Emergence of 5G Affect Federated Learning?

April 11, 2020
in Machine Learning
How Will the Emergence of 5G Affect Federated Learning?
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter
Illustration: © IoT For All

As development teams race to build out AI tools, it is becoming increasingly common to train algorithms on edge devices. Federated learning, a subset of distributed machine learning, is a relatively new approach that allows companies to improve their AI tools without explicitly accessing raw user data.

Conceived by Google in 2017, federated learning is a decentralized learning model through which algorithms are trained on edge devices. In regard to Google’s “on-device machine learning” approach, the search giant pushed their predictive text algorithm to Android devices, aggregated the data and sent a summary of the new knowledge back to a central server. To protect the integrity of the user data, this data was either delivered via homomorphic encryption or differential privacy, which is the practice of adding noise to the data in order to obfuscate the results.

You might also like

Even Small Companies Use AI, Machine Learning

Zorroa Launches Boon AI; No-code Machine Learning for Media-driven Organizations

Way of using machine learning to aid mental health diagnoses developed

Generally speaking, with federated learning, the AI algorithm is trained without ever recognizing any individual user’s specific data; in fact, the raw data never leaves the device itself. Only aggregated model updates are sent back. These model updates are then decrypted upon delivery to the central server. Test versions of the updated model are then sent back to select devices, and after this process is repeated thousands of times, the AI algorithm is significantly improved—all while never jeopardizing user privacy.

This technology is expected to make waves in the healthcare sector. For example, federated learning is currently being explored by medical start-up Owkin. Seeking to leverage patient data from several healthcare organizations, Owkin uses federated learning to build AI algorithms with data from various hospitals. This can have far-reaching effects, especially as it’s invaluable that hospitals are able to share disease progression data with each other while preserving the integrity of patient data and adhering to HIPAA regulations. By no means is healthcare the only sector employing this technology; federated learning will be increasingly used by autonomous car companies, smart cities, drones, and fintech organizations. Several other federated learning start-ups are coming to market, including Snips, S20.ai, and Xnor.ai, which was recently acquired by Apple.

Potential concerns

Man-In-The-Middle Attacks

Seeing as these AI algorithms are worth a great deal of money, it’s expected that these models will be a lucrative target for hackers. Nefarious actors will attempt to perform man-in-the-middle attacks. However, as mentioned earlier, by adding noise and aggregating data from various devices and then encrypting this aggregate data, companies can make things difficult for hackers.

Model Poisoning

Perhaps more concerning are attacks that poison the model itself. A hacker could conceivably compromise the model through his or her own device, or by taking over another user’s device on the network. Ironically, because federated learning aggregates the data from different devices and sends the encrypted summaries back to the central server, hackers who enter via a backdoor are given a degree of cover. Because of this, it is difficult, if not impossible, to identify where anomalies are located.

Bandwidth and Processing Limitations

Although on-device machine learning effectively trains algorithms without exposing raw user data, it does require a ton of local power and memory. Companies attempt to circumvent this by only training their AI algorithms on the edge when devices are idle, charging, or connected to Wi-Fi; however, this is a perpetual challenge.

The Impact of 5G

As 5G expands across the globe, edge devices will no longer be limited by bandwidth and processing speed constraints. According to a recent Nokia report, 4G base stations can support 100,000 devices per square kilometer; whereas, the forthcoming 5G stations will support up to 1 million devices in the same area. With enhanced mobile broadband and low latency, 5G will provide energy efficiency, while facilitating device-to-device communication (D2D). In fact, it is predicted that 5G will usher in a 10-100x increase in bandwidth and a 5-10x decrease in latency.

When 5G becomes more prevalent, we’ll experience faster networks, more endpoints, and a larger attack surface, which may attract an influx of DDoS attacks. Also, 5G comes with a slicing feature, which allows slices (virtual networks) to be easily created, modified, and deleted based on the needs of users. According to a research manuscript on the disruptive force of 5G, it remains to be seen whether this network slicing component will allay security concerns or bring a host of new problems.

To summarize, there are new concerns from both a privacy and a security perspective; however, the fact remains: 5G is ultimately a boon for federated learning.

Credit: Google News

Previous Post

Neural Networks — the Rudiments and the Mathematics

Next Post

Win a home security bundle by Canary*

Related Posts

Even Small Companies Use AI, Machine Learning
Machine Learning

Even Small Companies Use AI, Machine Learning

February 25, 2021
Zorroa Launches Boon AI; No-code Machine Learning for Media-driven Organizations
Machine Learning

Zorroa Launches Boon AI; No-code Machine Learning for Media-driven Organizations

February 24, 2021
Machine Learning

Way of using machine learning to aid mental health diagnoses developed

February 24, 2021
Machine Learning Market Size 2021
Machine Learning

Machine Learning Market Size 2021

February 24, 2021
Market Live: Global Machine Learning Big Data Analytics Education Market Can Deliver up to High CAGR over the next Few Years | COVID19 Impact Analysis
Machine Learning

Global Machine Learning Market 2021 Size, Industry Growth and Forecast till 2025 | COVID19 Impact Analysis

February 24, 2021
Next Post
Win a home security bundle by Canary*

Win a home security bundle by Canary*

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Google funds Linux kernel developers to work exclusively on security
Internet Security

Google funds Linux kernel developers to work exclusively on security

February 25, 2021
Online Trackers Increasingly Switching to Invasive CNAME Cloaking Technique
Internet Privacy

Online Trackers Increasingly Switching to Invasive CNAME Cloaking Technique

February 25, 2021
Off-chain reporting: Toward a new general purpose secure compute framework by Chainlink
Big Data

Off-chain reporting: Toward a new general purpose secure compute framework by Chainlink

February 25, 2021
Even Small Companies Use AI, Machine Learning
Machine Learning

Even Small Companies Use AI, Machine Learning

February 25, 2021
How Is Machine Learning Revolutionizing Supply Chain Management | by Gina Shaw | Feb, 2021
Neural Networks

How Is Machine Learning Revolutionizing Supply Chain Management | by Gina Shaw | Feb, 2021

February 25, 2021
Reaching customers at scale without losing their trust: Wednesday’s daily brief
Digital Marketing

Reaching customers at scale without losing their trust: Wednesday’s daily brief

February 25, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Google funds Linux kernel developers to work exclusively on security February 25, 2021
  • Online Trackers Increasingly Switching to Invasive CNAME Cloaking Technique February 25, 2021
  • Off-chain reporting: Toward a new general purpose secure compute framework by Chainlink February 25, 2021
  • Even Small Companies Use AI, Machine Learning February 25, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates