Saturday, April 17, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

How to use MLOps for an effective AI strategy

January 26, 2021
in Data Science
How to use MLOps for an effective AI strategy
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

The Machine Learning Lifecycle
(Adapted from Microsoft’s – Data Science Lifecycle)

87% of machine learning projects fail to make it into production. Deploying ML models in business use cases involves working around several data and engineering bottlenecks that impede the implementation process. In fact, ML teams spend a quarter of their time trying to develop the infrastructure needed to deploy ML.

You might also like

DSC Weekly Digest 12 April 2021

6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome

Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft

In one of our previous articles, we have discussed in detail the multiple reasons why such a high number of ML initiatives fail to make it to the production phase. The need to deal with these challenges and other smaller nuances of deploying machine learning models has given rise to the relatively new concept of MLOps.

What is MLOps

MLOps – a set of best practices aimed at automating the ML lifecycle – brings together the ML system development and ML system operations. An amalgamation of DevOps, machine learning, and data engineering, MLOps simplifies machine learning deployment issues in diverse business scenarios by establishing ML as an engineering discipline.

Businesses can leverage it to craft a definitive process for driving tangible outcomes through ML. One of the most prominent reasons behind the rising popularity of MLOps is its ability to bridge the expertise gap between business and data teams. Moreover, the wide-spread adoption of ML has had an impact on the evolution of the regulatory landscape. As this effect continues to grow, MLOps will help enterprises handle the bulk of regulatory compliance without impacting data practices.

And finally, the collaborative expertise between data and operations teams allows MLOps to bypass the bottlenecks that exist in the deployment process. And as we explore further, we will see how MLOps tightens the loop and irons out the creases in the machine learning system design and implementation framework.

MLOps framework for success

Since MLOps is a nascent field, it can be difficult to get a grasp of what it entails and its requirements. One of the foremost challenges in implementing MLOps is the difficulty in superimposing DevOps practices on ML pipelines. This is primarily due to the fundamental difference: DevOps deals with code, whereas ML is code and data. And when it comes to data, unpredictability is always a major concern.

Since code and data evolve independently and in parallel, the resulting disconnect causes ML production models to be slow and often inconsistent. Moreover, applying a simple CI/CD approach may not be possible due to a lack of reproducibility of an immense volume of data which is difficult to track and version. Therefore, for machine learning in production, it is crucial to adopt a CI/CD/CT (continuous training) approach.

Exploring the ML pipeline (CI/CD/CT)

Data teams need to look at MLOps simply as a code artefact that stands independent of individual data instances. This is why, breaking it up into two distinct pipelines (training pipeline and serving pipeline) can help ensure a safe run environment for batch files as well as an effective test cycle.

The training pipeline involves the entire model preparation process which starts with collecting and preparing data. Once the data is collected, validated, and prepared, data scientists need to implement feature engineering to assign data values for training as well as in production. At the same time, an algorithm has to be chosen that will define how the model identifies data patterns. Once this is done, the model can start training based on historical offline data. The trained model can then be evaluated and validated before being deployed through a model registry to the production pipeline.

A schematic representation of the complete model preparation process


Credit: Data Science Central By: Raghavendra Singh

Previous Post

Achieving cost-efficient superalloy powder manufacturing using machine learning

Next Post

Enhancing Email Security with MTA-STS and SMTP TLS Reporting

Related Posts

DSC Weekly Digest 01 March 2021
Data Science

DSC Weekly Digest 12 April 2021

April 14, 2021
6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome
Data Science

6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome

April 13, 2021
Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft
Data Science

Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft

April 13, 2021
Trends in custom software development in 2021
Data Science

Trends in custom software development in 2021

April 13, 2021
Epoch and Map of the Energy Transition through the Consensus Validator
Data Science

Epoch and Map of the Energy Transition through the Consensus Validator

April 13, 2021
Next Post
Enhancing Email Security with MTA-STS and SMTP TLS Reporting

Enhancing Email Security with MTA-STS and SMTP TLS Reporting

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

SysAdmin of Billion-Dollar Hacking Group Gets 10-Year Sentence
Internet Privacy

SysAdmin of Billion-Dollar Hacking Group Gets 10-Year Sentence

April 17, 2021
10 Popular Must-Read Free eBooks on Machine Learning
Machine Learning

10 Popular Must-Read Free eBooks on Machine Learning

April 17, 2021
Security crucial as 5G connects more industries, devices
Internet Security

Security crucial as 5G connects more industries, devices

April 17, 2021
Relay Therapeutics pays $85M for startup with a new AI tech for drug discovery
Machine Learning

Relay Therapeutics pays $85M for startup with a new AI tech for drug discovery

April 17, 2021
Google releases Chrome 90 with HTTPS by default and security fixes
Internet Security

Google releases Chrome 90 with HTTPS by default and security fixes

April 17, 2021
ML Scaling Requires Upgraded Data Management Plan
Machine Learning

ML Scaling Requires Upgraded Data Management Plan

April 17, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • SysAdmin of Billion-Dollar Hacking Group Gets 10-Year Sentence April 17, 2021
  • 10 Popular Must-Read Free eBooks on Machine Learning April 17, 2021
  • Security crucial as 5G connects more industries, devices April 17, 2021
  • Relay Therapeutics pays $85M for startup with a new AI tech for drug discovery April 17, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates