Saturday, March 6, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

How to make complicated machine learning developer problems easier to solve

September 3, 2020
in Machine Learning
How to make complicated machine learning developer problems easier to solve
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Commentary: AI/ML is more complicated than software development, but there are ways to make it more approachable.

Image: KOHb, Getty Images/iStockphoto

You might also like

Reducing Blind Spots in Cybersecurity: 3 Ways Machine Learning Can Help

Explainable Machine Learning, Model Transparency, and the Right to Explanation « Machine Learning Times

How to Boost Machine Learning in Healthcare Market Compound Annual Growth Rate (CAGR)? – KSU

More about artificial intelligence

We sometimes assume the best software companies will yield the best artificial intelligence (AI) but, as Andreessen Horowitz investors Martin Casado and Matt Bornstein argue in their post about AI economics, this isn’t necessarily the case. In fact, “…a deep, practical understanding of the problem to be solved,” and not necessarily of the software to be used, may hold the key. In some ways, this hearkens back to Gartner analyst Svetlana Sicular’s contention: “Organizations already have people who know their own data better than mystical data scientists….Learning Hadoop is easier than learning the company’s business.”

Given Casado’s and Bornstein’s contention that “AI development is a process of experimenting, much like chemistry or physics,” and not a software development “process of building and engineering,” how should companies approach AI to maximize their chances of success?

SEE: Natural language processing: A cheat sheet (free PDF) (TechRepublic)

Taming the long tail of artificial intelligence and machine learning

Economist John Maynard Keynes once quipped, “In the long run we are all dead.” When it comes to AI/machine learning (ML), however, it’s more a matter of “in the long tail we are all hopelessly confused.” Or, as Casado and Bornstein pointed out, incapable of easily taming data that refuses to homogenize:

Many of the difficulties in building efficient AI companies happen when facing long-tailed distributions of data….It’s becoming clear that long-tailed distributions are also extremely common in machine learning, reflecting the state of the real world and typical data collection practices….

[C]urrent ML techniques are not well equipped to handle [long-tail distributions of data]. Supervised learning models tend to perform well on common inputs (i.e. the head of the distribution) but struggle where examples are sparse (the tail). Since the tail often makes up the majority of all inputs, ML developers end up in a loop–seemingly infinite, at times–collecting new data and retraining to account for edge cases. And ignoring the tail can be equally painful, resulting in missed customer opportunities, poor economics, and/or frustrated users.

Unfortunately, the answer isn’t to throw more computational horsepower or data at the problem. The very problem of disparate data across diverse customer inputs contributes to diseconomies of scale, whereby it may cost 10X more (in terms of data, infrastructure, and more) to generate a 2X improvement. In AI/ML, then, the answers to business problems can get worse even as we throw more money at the problem. 

So what’s an AI/ML engineer to do?

Detecting bots with a simplify and conquer approach

Though Casado and Bornstein delve into transfer learning and meta models to tackle the hardest of ML problems (local, rather than global, long-tail distributions of data), the most straightforward approach to data complexity seems to involve narrowing down the problem(s) to be solved and, hence, the data distribution. (Or, as they first point out, first determine whether a long-tailed data distribution is even involved. “If the problem can be described reasonably well with linear or polynomial constraints–the message was clear: don’t use machine learning! And especially don’t use deep learning.”)

Rather than approaching a big problem like “bot detection” in a universal way, a company like Cloudflare has used a technique dubbed “componentizing” to simply the task:

[Cloudflare’s] goal was to process a massive set of log files to identify (and flag or block) non-human visitors to millions of websites. Treating this as a single task was ineffective at scale because the concept of a “bot” included hundreds of distinct subtypes–search crawlers, data scrapers, port scanners, etc–exhibiting unique behaviors. Using clustering techniques and experimenting with various levels of granularity, though, they ultimately found 6-7 categories of bots that could each be addressed with a unique supervised learning model. Their models are now running on a meaningful portion of the internet, providing real-time protection, with software-like gross margins.

Similar techniques can help in other ways. For natural language processing, for example, narrowing down what users can enter can help “shorten the tail.” It also helps to restrict the scope of the output to product suggestions (“others who bought X also bought Y”). In general, such approaches can help to give customers enough of the AI magic to satisfy, without overwhelming the developer with cost and complexity. 

All of this is easier if the company/developer clearly understands what they need to build, which depends on a strong sense of the organization’s business (and, hence, data). The more clearly someone understands the business, the better they’ll be able to break up complicated problems into approachable solutions. 

Disclosure: I work for AWS, but the views expressed herein are mine and don’t necessarily reflect those of my employer.

Data, Analytics and AI Newsletter

Learn the latest news and best practices about data science, big data analytics, and artificial intelligence.
Delivered Mondays



Sign up today

Also see

Credit: Google News

Previous Post

News Topic Classification using LSTM | by Muhammad Ardi | Sep, 2020

Next Post

Chris D’Elia Faces Vile New Accusations & He Keeps Denying Them

Related Posts

Machine learning the news for better macroeconomic forecasting
Machine Learning

Reducing Blind Spots in Cybersecurity: 3 Ways Machine Learning Can Help

March 6, 2021
The ML Times Is Growing – A Letter from the New Editor in Chief – Machine Learning Times
Machine Learning

Explainable Machine Learning, Model Transparency, and the Right to Explanation « Machine Learning Times

March 5, 2021
How to Boost Machine Learning in Healthcare Market Compound Annual Growth Rate (CAGR)? – KSU
Machine Learning

How to Boost Machine Learning in Healthcare Market Compound Annual Growth Rate (CAGR)? – KSU

March 5, 2021
Comprehensive Report on Machine Learning Market 2021 | Size, Growth, Demand, Opportunities & Forecast To 2027
Machine Learning

Comprehensive Report on Machine Learning Market 2021 | Size, Growth, Demand, Opportunities & Forecast To 2027

March 5, 2021
2021 Gartner Magic Quadrant for Data Science and Machine Learning Platforms
Machine Learning

2021 Gartner Magic Quadrant for Data Science and Machine Learning Platforms

March 5, 2021
Next Post
Chris D’Elia Faces Vile New Accusations & He Keeps Denying Them

Chris D’Elia Faces Vile New Accusations & He Keeps Denying Them

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Machine learning the news for better macroeconomic forecasting
Machine Learning

Reducing Blind Spots in Cybersecurity: 3 Ways Machine Learning Can Help

March 6, 2021
5 Tech Trends Redefining the Home Buying Experience in 2021 | by Iflexion | Mar, 2021
Neural Networks

5 Tech Trends Redefining the Home Buying Experience in 2021 | by Iflexion | Mar, 2021

March 6, 2021
Zigbee inside the Mars Perseverance Mission and your smart home
Internet Security

Zigbee inside the Mars Perseverance Mission and your smart home

March 6, 2021
Mazafaka — Elite Hacking and Cybercrime Forum — Got Hacked!
Internet Privacy

Mazafaka — Elite Hacking and Cybercrime Forum — Got Hacked!

March 6, 2021
Autonomous Cars And Minecraft Have This In Common  
Artificial Intelligence

Autonomous Cars And Minecraft Have This In Common  

March 5, 2021
The ML Times Is Growing – A Letter from the New Editor in Chief – Machine Learning Times
Machine Learning

Explainable Machine Learning, Model Transparency, and the Right to Explanation « Machine Learning Times

March 5, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Reducing Blind Spots in Cybersecurity: 3 Ways Machine Learning Can Help March 6, 2021
  • 5 Tech Trends Redefining the Home Buying Experience in 2021 | by Iflexion | Mar, 2021 March 6, 2021
  • Zigbee inside the Mars Perseverance Mission and your smart home March 6, 2021
  • Mazafaka — Elite Hacking and Cybercrime Forum — Got Hacked! March 6, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates