Saturday, April 17, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Neural Networks

How to create Country Heatmaps in R | by data4help | Oct, 2020

November 3, 2020
in Neural Networks
How to create Country Heatmaps in R | by data4help | Oct, 2020
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

The data representation we face is referred to as a wide-format. A wide-format means that one variable (in that case the year information) is used as columns. Therefore, the entire dataset is much wider than if the variable year would be represented by only one column. This would then lead to a much longer dataset, which is why this format is referred to as the long-format. The change from a wide-format to a long-format is necessary because of our plotting tool ggplot, which could be seen as R’s equivalent to Python’s Seaborn.

Inflation

After knowing why and how we have to reshape the GDP per Capita dataset, it is now time to elaborate on how to process the inflation data. For that we briefly cover what Inflation is and why it is needed.

You might also like

The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021

Templates Vs Machine Learning OCR | by Infrrd | Mar, 2021

Artificial Intelligence in Radiology — Advantages, Use Cases & Trends | by ITRex Group | Apr, 2021

Inflation describes the measure of the rate by which the average price level increases over time. A positive inflation rate would imply that the average cost of a certain basked of goods increased over time and that we can buy fewer things with the same amount of money. That implies that 100 Euros in 2019 can buy us less than the same amount in 1991. To make these number comparable nevertheless, we have to adjust them for inflation.

1. Fundamentals of AI, ML and Deep Learning for Product Managers

2. The Unfortunate Power of Deep Learning

3. Graph Neural Network for 3D Object Detection in a Point Cloud

4. Know the biggest Notable difference between AI vs. Machine Learning

The way we measure inflation is through something which is referred to as the Consumer-Price-Index (CPI). This index represents the price of a certain basket of goods at different points in time. From the data-frame on the left side we can see that this basket cost 67.2 in 1991 and 105.8 in 2020. Given that our GDP per Capita data only ranges until 2019, and that a CPI index is normalized to a certain year, we divide all values of this data-frame by the CPI value in 2019.

The result of dividing all CPI values by the index-level of 2019 can be seen in the data-frame on the left. Now these values are easier to interpret. An average product in 1991 cost 63.5% of what it cost in 2019.

We can use these values now to adjust the GDP per Capita values over time in order to make them comparable over the years. This is done by simply dividing all GDP values by the respective inflation value of a given year.

Additionally we extract the year information from the Date column in order to match with the year information from the GDP per Capita sheet.

All of the described steps of reshaping and handling inflation are done through the code snippet below.

After cleaning our data and bringing it into a ggplot-friendly long-format, it is now time to import geospatial data of Germany. Geospatial or spatial data contains information needed to build a map of a location, in this case Germany.

Importing that information is done through the handy getData function. This function takes, amongst other things, the country name and the level of granularity as an input. In our case we specify “Germany” as the country and because we are interested not only in the country as a whole, but rather in the different states we specify a granularity level which also gives State information. The API gives us a so called Large SpatialPolygonsDataFrame. When opened this object looks like this:

We can see that we find 16 polygons. This makes sense given that we have 16 states in Germany. Each state is therefore represented by one Polygon.

It is important to note that the order of these 16 Polygons does not necessarily align with the alphabetical order of the German states. Therefore, we have to make sure that the information of GDP per Capita is matched up with the right Polygon. Otherwise it could be that we plot the information for e.g. Berlin in Hamburg or vice versa.

Lastly, we have to bring the information into a data frame into the long-format that ggplot prefers. This is done through the broom package, which includes the tidy function. This function, like the entire package, is for tidying up messy datatypes and bring them into a workable format.

The code for the aforementioned steps looks the following:

The resulting data frame below now shows us all the desired information. The longitude and latitude information (long and lat) is needed for ggplot to know the boundaries of a state and the id column tells us which state we are looking at.

The only remaining steps are to merge the GDP per Capita onto the mapping information and plotting it all.

Our final plotting code has to be fine-tuned to fit the purpose of the visualization. In our case, we would like to have one heatmap for every year between 1991 and 2019. To achieve that one could run the plotting code in a loop, iterating over all years, which is also what we will do later on. For better readability though, we start by showing how to plot a single year.

We start by subsetting the GDP per Capita data frame so that it only contains information for a certain year (e.g. 1991). Afterwards, we merge these 16 rows for this single year onto the mapping data frame we showed earlier. The merging variable is the id column we discussed earlier. Afterwards we can already call ggplot and fine-tune our plot.

Germany has two states (Bremen and Berlin) which are fully embedded in other, bigger states. It could therefore happen that the bigger state around them is simply plotted over the smaller state. Therefore it is important to tell ggplot that the bigger states should be plotted before these smaller states, which is also shown in the upcoming code snippet (line 7–11).

The code above will now generate and save the following image:

If we would now even like to include a time component we could also create multiple heatmaps, one for every year, and play them one after another through a GIF. For that we make use of the beautiful ImageMick package which simply takes all available images in a specified folder and converts them into a GIF.

The following snippet of code shows the procedure to first create heatmaps for all years before turning them into a GIF like it can be seen below.

By tweaking these code snippets, you can create your own geographical heatmaps for other visualization challenges.

Credit: BecomingHuman By: data4help

Previous Post

Google patches second Chrome zero-day in two weeks

Next Post

Amazon EC2 P4d instances for pushing machine learning boundaries now available

Related Posts

The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021
Neural Networks

The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021

April 17, 2021
Templates Vs Machine Learning OCR | by Infrrd | Mar, 2021
Neural Networks

Templates Vs Machine Learning OCR | by Infrrd | Mar, 2021

April 16, 2021
Artificial Intelligence in Radiology — Advantages, Use Cases & Trends | by ITRex Group | Apr, 2021
Neural Networks

Artificial Intelligence in Radiology — Advantages, Use Cases & Trends | by ITRex Group | Apr, 2021

April 16, 2021
A simple explanation of Machine Learning and Neural Networks and A New Perspective for ML Experts | by Akhilesh Ravi | Apr, 2021
Neural Networks

A simple explanation of Machine Learning and Neural Networks and A New Perspective for ML Experts | by Akhilesh Ravi | Apr, 2021

April 15, 2021
Why Corporate AI Projects Fail? Part 2/4 | by Sundeep Teki, PhD | Apr, 2021
Neural Networks

Why Corporate AI Projects Fail? Part 2/4 | by Sundeep Teki, PhD | Apr, 2021

April 15, 2021
Next Post
Amazon EC2 P4d instances for pushing machine learning boundaries now available

Amazon EC2 P4d instances for pushing machine learning boundaries now available

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO
Machine Learning

Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO

April 17, 2021
The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021
Neural Networks

The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021

April 17, 2021
A new collective to fight adtech fraud: Friday’s daily brief
Digital Marketing

A new collective to fight adtech fraud: Friday’s daily brief

April 17, 2021
Cyberattack on UK university knocks out online learning, Teams and Zoom
Internet Security

Cyberattack on UK university knocks out online learning, Teams and Zoom

April 17, 2021
SBI Sumishin Net Bank partners with DLT Labs on supply chain financing network
Blockchain

SBI Sumishin Net Bank partners with DLT Labs on supply chain financing network

April 16, 2021
Machine learning approach identifies more than 400 genes tied to schizophrenia
Machine Learning

Machine learning models may predict criminal offenses related to psychiatric disorders

April 16, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Teslafan, a Blockchain-Powered Machine Learning Technology Project, Receives Investment Prior to the ICO April 17, 2021
  • The “Blue Brain” Project-A mission to build a simulated Brain | by The A.I. Thing | Mar, 2021 April 17, 2021
  • A new collective to fight adtech fraud: Friday’s daily brief April 17, 2021
  • Cyberattack on UK university knocks out online learning, Teams and Zoom April 17, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates