Thursday, April 15, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Neural Networks

How Machine Learning Transforms Insurance – Becoming Human: Artificial Intelligence Magazine

April 1, 2019
in Neural Networks
How Machine Learning Transforms Insurance – Becoming Human: Artificial Intelligence Magazine
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: BecomingHuman

We like our insurance carriers to be risk averse. So it should come as no surprise they are often last to innovate. Insurers need to feel very comfortable with their risk predictions before making a change. Well, machine learning is writing a new chapter in the old insurance book. There are 3 key reasons why this is happening now:

You might also like

Data Labeling Service — How to Get Good Training Data for ML Project? | by ByteBridge | Apr, 2021

How to Enter Your First Zindi Competition | by Davis David

Why I Think That Avengers: Age of Ultron is One of the Best Sci-Fi Movies About A.I | by Brighton Nkomo | Apr, 2021

  1. New InsurTech players are grabbing market share and setting new standards. Traditional carriers have no choice but to follow suit.
  2. Customers are expecting Netflix/Spotify like personalization, and have no problem changing provider — this is expected to grow as we see more millennials maturing out of their parents’ policies;
  3. Getting started with machine learning is becoming VERY easy: open source frameworks, accelerated hardware, pre-trained models available via API’s, validated algorithms, explosion of online training.

Trending AI Articles:

1. Ten trends of Artificial Intelligence (AI) in 2019

2. Bursting the Jargon bubbles — Deep Learning

3. How Can We Improve the Quality of Our Data?

4. Machine Learning using Logistic Regression in Python with Code

As with any innovation it only takes two things for wide spread adoption:

  1. Potential to improve business goals.
  2. Easy to pilot impact on business goals.

With time, we see that successful pilots become products. Teams are hired / trained, resources are allocated, business goals gain more ‘appetite’ and models are tweaked.

For P&C carriers we see the opportunity for improving business goals, and easily pilot machine learning in the following areas:

Risk Modeling

Given the complex and behavioral nature of risk factors, Machine Learning is ideal for predicting risk. The challenge lies in regulatory oversight and the fact that most historic data is still unstructured. This is why we often see machine learning applied to new products such as those using data from IoT sensors in cars (telematics) and home (connected home). But innovative carriers are not limited there. They use pre-trained machine learning models to structure their piles of unstructured data: APIs to transcribe coupled with natural language understanding (NLU) extract features from recorded call center calls, handwriting and NLP/NLU tools for written records. Leading towards identifying new risk factors using unsupervised learning models.

Underwriting

Carriers can get an actuarial lift even without designing and filing new actuarial models. Using machine learning to better predict risk factors in existing (filed) models. For example, a carrier may have already filed a mileage based rate-plan for auto insurance, but rely on user reported, or other less accurate estimates to determine mileage. Machine learning can help predict mileage driven, less biased and more accurately. Similarly, API’s to pre-trained chat bots using lifelike speech and translators, can turn website underwriting forms into more engaging and personalized chats, that have a good chance to reduce soft fraud.

Claims Handling

Claims handling is a time intensive task often involving manual labor by claims adjusters on site. Innovative carriers already have policy holders take pictures and videos of their damaged assets (home, car…) and compare to baseline or similar assets. Carriers could easily leverage existing API’s for image processing, coupled with bot APIs to build a high-precision model, even at the expense of low-recall. Compared to having 100% of their book handled manually, a triage bot that automates even a mere 20% of the claims (with high precision) can enable carriers to start with a low risk service that’s on par with new InsurTech players, and improve ratios over time. Such a tool can even be leveraged by adjusters, reducing their time and cost.

Coverages

While personalized pricing may be regulatory challenging, personalizing the insurance product offering is expected in this Netflix / Spotify age. As basic coverage is commoditizing, carriers differentiate their products based on riders and value added services. Not to mention full product offerings based on life events. Carriers can (with consent of course) leverage social media data to tailor and personalize the offering. Similarly marketing departments can use readily available recommendation algorithms to match and promote content about the benefits of certain riders / value-adds to relevant customers at the relevant time.

Distribution

The world of insurance distribution is growing in complexity. Carriers are struggling with the growing power of intermediaries and agents are having hard time optimizing their efforts due to lack of predictability of loss commissions. Point of sale and affiliation programs are growing and with them the need for new distribution incentive models. Both traditional and new distribution channels could benefit from machine learning. Brokers, point-of-sale partners and carriers can leverage readily available machine learning models and algorithms designed for retail, in order to forecast channel premiums. Carriers can grow direct channels without growing headcount, using pre-trained chat bots, NLU and lifelike speech API’s.

Machine learning is part of our everyday lives. Innovative insurers are now jumping on the ML wagon with an ever growing ease, which carriers will be left behind?

Don’t forget to give us your 👏 !

Credit: BecomingHuman By: Oren Steinberg

Previous Post

Where Consumer Purchase Decisions Are Made: Home

Next Post

Machine Learning Market Value Projected to Expand by 2018-2026 – Truth Daily Mirror

Related Posts

Data Labeling Service — How to Get Good Training Data for ML Project? | by ByteBridge | Apr, 2021
Neural Networks

Data Labeling Service — How to Get Good Training Data for ML Project? | by ByteBridge | Apr, 2021

April 14, 2021
How to Enter Your First Zindi Competition | by Davis David
Neural Networks

How to Enter Your First Zindi Competition | by Davis David

April 14, 2021
Why I Think That Avengers: Age of Ultron is One of the Best Sci-Fi Movies About A.I | by Brighton Nkomo | Apr, 2021
Neural Networks

Why I Think That Avengers: Age of Ultron is One of the Best Sci-Fi Movies About A.I | by Brighton Nkomo | Apr, 2021

April 14, 2021
Music and Artificial Intelligence | by Ryan M. Raiker, MBA | Apr, 2021
Neural Networks

Music and Artificial Intelligence | by Ryan M. Raiker, MBA | Apr, 2021

April 13, 2021
BERT Transformers — How Do They Work? | by James Montantes | Apr, 2021
Neural Networks

BERT Transformers — How Do They Work? | by James Montantes | Apr, 2021

April 13, 2021
Next Post
Machine Learning Market Value Projected to Expand by 2018-2026 – Truth Daily Mirror

Machine Learning Market Value Projected to Expand by 2018-2026 – Truth Daily Mirror

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Sailthru Announces Machine Learning Features for Improved Lifecycle Optimization
Machine Learning

Sailthru Announces Machine Learning Features for Improved Lifecycle Optimization

April 14, 2021
Data Labeling Service — How to Get Good Training Data for ML Project? | by ByteBridge | Apr, 2021
Neural Networks

Data Labeling Service — How to Get Good Training Data for ML Project? | by ByteBridge | Apr, 2021

April 14, 2021
The Search Engine Land Awards are open: Wednesday’s daily brief
Digital Marketing

The Search Engine Land Awards are open: Wednesday’s daily brief

April 14, 2021
Six courses to build your technology skills in 2021 – IBM Developer
Technology Companies

IBM joins Eclipse Adoptium and offers free certified JDKs with Eclipse OpenJ9 – IBM Developer

April 14, 2021
Cyber criminals are installing cryptojacking malware on unpatched Microsoft Exchange servers
Internet Security

Cyber criminals are installing cryptojacking malware on unpatched Microsoft Exchange servers

April 14, 2021
Simplify, then Add Lightness – Consolidating the Technology to Better Defend Ourselves
Internet Privacy

Simplify, then Add Lightness – Consolidating the Technology to Better Defend Ourselves

April 14, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Sailthru Announces Machine Learning Features for Improved Lifecycle Optimization April 14, 2021
  • Data Labeling Service — How to Get Good Training Data for ML Project? | by ByteBridge | Apr, 2021 April 14, 2021
  • The Search Engine Land Awards are open: Wednesday’s daily brief April 14, 2021
  • IBM joins Eclipse Adoptium and offers free certified JDKs with Eclipse OpenJ9 – IBM Developer April 14, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates