Thursday, January 21, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

How Alexa Learns – Scientific American Blog Network

March 6, 2019
in Machine Learning
How Alexa Learns – Scientific American Blog Network
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: Google News

Over the past 10 years, commercial AI has enjoyed what we at Amazon call the flywheel effect: customer interactions with AI systems generate data; with more data, machine learning algorithms perform better, which leads to better customer experiences; better customer experiences drive more usage and engagement, which in turn generate more data.

You might also like

Skyrim modders have a new machine learning tool that turns text to realistic NPC speech

The 37 Best Machine Learning Courses on Udemy to Consider

2021 technology trend review, part two: AI, knowledge graphs, and the COVID-19 effect

Those data are used to train machine learning systems in three chief ways. The first is supervised learning, in which the training data are hand-labeled (with, say, words’ parts of speech or the names of objects in an image) and the system learns to apply labels to unlabeled data. A variation of this is weakly supervised learning, which uses easily acquired but imprecise labels to enable machine learning at scale. If a website visitor performs a search, for instance, the links she clicks indicate which search results should have been at the top of the list; that kind of implicit information can be used to automatically label data.

Training with entirely unlabeled data is called unsupervised learning. There, the most common approach is to cluster data together according to structural features; the clusters themselves define classification categories. Finally, semi-supervised learning leverages a small amount of labeled training data to extract information from much larger stores of unlabeled training data.

In recent AI research, supervised learning has predominated. But today, commercial AI systems generate far more customer interactions than we could begin to label by hand. The only way to continue the torrid rate of improvement that commercial AI has delivered so far is to reorient ourselves toward semi-supervised, weakly supervised and unsupervised learning. Our systems need to learn how to improve themselves.

The most common approach to semi-supervised learning is self-training, in which a machine learning system trained on a smattering of labeled data itself applies labels to a much larger set of unlabeled data. Because machine learning systems are statistical, their outputs have associated confidence scores. The outputs of the system are sorted according to confidence score, and those that fall within the right confidence window are used to train the system further. The system, in other words, is retrained on data that it has labeled itself.

Typically, self-training works best with high-confidence training examples. But in some contexts, Amazon researchers have found that lower-confidence examples offer greater performance improvements, as they’re more likely to capture nuances that the system hasn’t already learned.

Another way to leverage small amounts of labeled data is to lump it together with unlabeled data and apply some kind of unsupervised clustering algorithm to the result. For instance, sentences can be automatically embedded in a high-dimensional space, where they’re grouped together according to how frequently their component words co-occur with other words. Then, algorithms can generalize the labels of the labeled sentences to the unlabeled sentences in the same clusters, dramatically expanding the number of training examples available to a natural-language-understanding system.

Companies that depend on machine learning for real-time data classification have an additional semi-supervised–training option. That’s to use labeled data to train a powerful but impractically slow neural network, then use that network to label training data for a leaner, more efficient real-time network. Amazon researchers are using this approach across a range of business units.

Frequently, AI companies can also use customer feedback to automatically label data. For instance, the numerical (star) ratings associated with product reviews on Amazon.com could provide automatic data labels for a weakly supervised machine learning system that tries to infer customer sentiment from linguistic cues.

Customers of the Amazon Alexa voice service don’t typically rate Alexa’s responses to individual requests, but their interactions with Alexa do provide useful implicit signals. If Alexa’s initial response to a request is unsatisfying, the customer might cut the response off and rephrase the request. If the response to the rephrased request is allowed to play out, it’s a strong signal that the first request should have elicited the same response.

Alexa automatically analyzes a large number of such rephrased requests every month, learning how to rewrite the most common of them. That’s why, for instance, if you say to Alexa, “Play ‘Radioactive’ by Magic Dragons,” she’ll respond, “Playing ‘Radioactive’ by Imagine Dragons.”

Currently, Alexa’s rewrite procedures are general: anyone who requests music by Magic Dragons has the same likelihood of receiving music from Imagine Dragons instead. But the underlying technology could be adapted to provide customers with personalized query responses. It may be, for instance, that among the many, many customers requesting music by Imagine Dragons, there are a few who are really trying to find the Magic Dragons, the former Wednesday-night house band at the Spread Eagle pub in Ipswich, England.

Amazon researchers are exploring a host of other techniques for doing unsupervised learning, from monitoring the ordinary operating parameters of cloud servers in order to recognize anomalies; to using the Amazon.com product hierarchy to draw connections between customers’ product searches; to bootstrapping natural-language–understanding systems in new languages by automatically translating texts into a language with existing machine learning systems, using those systems to label the text, and automatically translating the labeled text back into the target language.

The promise of commercial AI is the promise of machine learning at scale. But that’s not just a matter of throwing more data at existing problems. More and more, it also means finding ingenious ways to use that data efficiently, without human involvement.

Credit: Google News

Previous Post

Google reveals Chrome zero-day under active attacks

Next Post

NSA Releases GHIDRA 9.0 — Free, Powerful Reverse Engineering Tool

Related Posts

Skyrim modders have a new machine learning tool that turns text to realistic NPC speech
Machine Learning

Skyrim modders have a new machine learning tool that turns text to realistic NPC speech

January 21, 2021
The 37 Best Machine Learning Courses on Udemy to Consider
Machine Learning

The 37 Best Machine Learning Courses on Udemy to Consider

January 21, 2021
2021 technology trend review, part two: AI, knowledge graphs, and the COVID-19 effect
Machine Learning

2021 technology trend review, part two: AI, knowledge graphs, and the COVID-19 effect

January 21, 2021
Machine learning could cut delays from traffic lights
Machine Learning

Machine learning could cut delays from traffic lights

January 20, 2021
Skyrim fan creates impressive trailer using machine learning AI instead of voice actors
Machine Learning

Skyrim fan creates impressive trailer using machine learning AI instead of voice actors

January 20, 2021
Next Post
NSA Releases GHIDRA 9.0 — Free, Powerful Reverse Engineering Tool

NSA Releases GHIDRA 9.0 — Free, Powerful Reverse Engineering Tool

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Ransomware victims that have backups are paying ransoms to stop hackers leaking their stolen data
Internet Security

Ransomware victims that have backups are paying ransoms to stop hackers leaking their stolen data

January 21, 2021
Skyrim modders have a new machine learning tool that turns text to realistic NPC speech
Machine Learning

Skyrim modders have a new machine learning tool that turns text to realistic NPC speech

January 21, 2021
6 Major AI Use Cases In IT Operations | by Gina Shaw | Jan, 2021
Neural Networks

6 Major AI Use Cases In IT Operations | by Gina Shaw | Jan, 2021

January 21, 2021
Agile Marketing: 3 Tips for a Post-Pandemic Economy
Marketing Technology

Agile Marketing: 3 Tips for a Post-Pandemic Economy

January 21, 2021
Best antivirus software in 2021
Internet Security

Best antivirus software in 2021

January 21, 2021
The 37 Best Machine Learning Courses on Udemy to Consider
Machine Learning

The 37 Best Machine Learning Courses on Udemy to Consider

January 21, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Ransomware victims that have backups are paying ransoms to stop hackers leaking their stolen data January 21, 2021
  • Skyrim modders have a new machine learning tool that turns text to realistic NPC speech January 21, 2021
  • 6 Major AI Use Cases In IT Operations | by Gina Shaw | Jan, 2021 January 21, 2021
  • Agile Marketing: 3 Tips for a Post-Pandemic Economy January 21, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates