Wednesday, April 14, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

Gross Underestimates and Overestimates from the Same Data: Covid-19 Death Rates Example

December 25, 2020
in Data Science
Gross Underestimates and Overestimates from the Same Data: Covid-19 Death Rates Example
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter
  • Ten-fold differences have been reported in Covid-19 death rates.
  • Estimate issues are because of how the data is calculated.
  • Why the same data can yield gross overestimates and underestimates.

What is the actual death rate for Covid-19? After nearly a year of the pandemic, no one can agree on an answer. Depending on which expert you ask, it’s somewhere between 0.53% and 6% for the general population and possibly as high as 35% for older patients with certain pre-existing conditions. These widely varying figures illustrate how difficult it is to take data and make predictions–even with the best data and machine learning tools at your disposal.

Part of the problem is clarity: news sources and blogs in particular cite statistics without clarifying exactly what statistic they are talking about. For example, one MedPageToday article [1] mentions a “fatality rate”; The article doesn’t make it immediately clear if that fatality rate applies to hospitalized cases, cases who have tested positive, or the population as a whole (each of these rates would be vastly different).

You might also like

DSC Weekly Digest 12 April 2021

6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome

Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft

Despite Covid-19- fueling one of the largest explosions of scientific literature in history [2], we’re not even close to accurately figuring out what percentage of the population the virus actually kills. All of the reported figures amount to nothing more than data-driven guesswork.

The Anatomy of a Death Rate Calculation

A recent episode of The Guardian’s Science Weekly Update [3] addressed the question of why Covid-19 fatality rates vary so much. In the program, Paul Hunter, professor of medicine at the University of East Anglia,  explains that the figures such as the World Health Organization’s reported death rate of 3.4 percent was calculated by the number of Covid-19 related deaths (as recorded on death certificates) divided by the number of confirmed cases (based on positive Covid-19 tests). That figure, called the “case fatality rate (CFR)” is is a statistic that Dr. Robert Pearl M.D. calls “inaccurate and misleading” [4]. Why? Depending on how you look at it, it’s either a gross underestimate or overestimate.

The  estimation issues arise because of how the figures are calculated. The CFR is calculated by recording people at the beginning of their illness and at the end of their illness–people who are still ill when the data is being recorded may still go on to die after the figures have been tallied. The 3.4%  then is an underestimate–the people who are currently sick and go on to die will push that percentage up to around 5 to 6%.  Although around 5% might seem like a reasonable estimate (probably one that matches figures you’ve often seen in the news), note how the above figure is obtained in the first place– the number of deaths divided by the number of cases. There are an unknown number of people, possibly up to 10 times higher than the official counts [5] of people with the virus who don’t get tested. If we could count all of these cases, most of which are probably mild or asymptomatic, then the death rate would be significantly lower, meaning that 3.4% is actually an overestimate. The actual number of deaths as it relates to the actual number of cases in the population is called the “true infection fatality rate (IFR)” and may be as low as  0.53% [7]. 

The solution to more accurate reporting seems clear: find more cases. But this isn’t as easy as it sounds. One recent study showed that in France, a paltry 10% of Covid-19 cases were actually detected [8].

Throwing in a Few More Complications

Complicating matters even further is that, geographically speaking, detection rates also vary widely . When you try to compare death rate between countries, there may be more than a 20-fold difference in identified cases [5]. 

Other issues that have lead to overestimates include not accounting for an aging population [6] or the presence of pre-existing medical conditions; The fatality rate for younger, healthier individuals is significantly lower than for older individuals with pre-existing conditions. Researchers at Johns Hopkins used machine learning to discover that age is the strongest predictor of who dies from Covid-19, ranging from a 1% fatality rate for the under-50s to a whopping 34 percent for those over age 85. However, those figures were also based on patients who are symptomatic and is therefore also an overestimate of death risk. 

Calculating Covid-19 death rates in the population is a challenge, and case counts are unreliable. In general, we can say that the organizations that are better at identifying mild cases will have the most accurate figures. However, identifying which organization is more “accurate” at this task is a challenge in itself.

Data Doesn’t Always Tell the Right Picture

The fact is, an analysis is only going to be as good as the data at hand. Collecting and analyzing data opens up a myriad of possible statistical biases, [no term] all of which can completely ruin your analysis. And then–assuming you have reliable [no term] data–it then becomes a matter of clearly communicating your results to the general public: a matter which as the above example shows, is no easy task.

References

[1] Here’s Why COVID-19 Mortality Has Dropped

[2] Scientists are drowning in COVID-19 papers. Can new tools keep them…

[3] Covid-19: why are there different fatality rates? – Science Weekly …

[4] Three Misleading, Dangerous Coronavirus Statistics

[5] Estimating the Number of SARS-CoV-2 Infections and the Impact of Mi…

[6] Impact of Population Growth and Aging on Estimates of Excess U.S. D…

[7] A systematic review and meta-analysis of published research data on…

[8] COVID research updates: How 90% of French COVID cases evaded detection

Image: CDC (Public Domain)


Credit: Data Science Central By: Stephanie Glen

Previous Post

Machine Learning in Education Market 2020-2029 : COVID-19 Impact Analysis

Next Post

Microsoft Warns CrowdStrike of Hackers Targeting Azure Cloud Customers

Related Posts

DSC Weekly Digest 01 March 2021
Data Science

DSC Weekly Digest 12 April 2021

April 14, 2021
6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome
Data Science

6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome

April 13, 2021
Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft
Data Science

Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft

April 13, 2021
Trends in custom software development in 2021
Data Science

Trends in custom software development in 2021

April 13, 2021
Epoch and Map of the Energy Transition through the Consensus Validator
Data Science

Epoch and Map of the Energy Transition through the Consensus Validator

April 13, 2021
Next Post
Microsoft Warns CrowdStrike of Hackers Targeting Azure Cloud Customers

Microsoft Warns CrowdStrike of Hackers Targeting Azure Cloud Customers

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Microsoft April patch download covers 114 CVEs including new Exchange Server bugs
Internet Security

Microsoft April patch download covers 114 CVEs including new Exchange Server bugs

April 14, 2021
RCE Exploit Released for Unpatched Chrome, Opera, and Brave Browsers
Internet Privacy

RCE Exploit Released for Unpatched Chrome, Opera, and Brave Browsers

April 14, 2021
DSC Weekly Digest 01 March 2021
Data Science

DSC Weekly Digest 12 April 2021

April 14, 2021
ML Ops and the Promise of Machine Learning at Scale
Machine Learning

ML Ops and the Promise of Machine Learning at Scale

April 14, 2021
How to Enter Your First Zindi Competition | by Davis David
Neural Networks

How to Enter Your First Zindi Competition | by Davis David

April 14, 2021
B2B Content Marketing – Facing Challenges
Marketing Technology

B2B Content Marketing – Facing Challenges

April 14, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Microsoft April patch download covers 114 CVEs including new Exchange Server bugs April 14, 2021
  • RCE Exploit Released for Unpatched Chrome, Opera, and Brave Browsers April 14, 2021
  • DSC Weekly Digest 12 April 2021 April 14, 2021
  • ML Ops and the Promise of Machine Learning at Scale April 14, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates