Tuesday, March 2, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Artificial Intelligence

Google to Open AI Lab in Princeton and Collaborate with University Researchers

January 7, 2019
in Artificial Intelligence
Google to Open AI Lab in Princeton and Collaborate with University Researchers
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Two Princeton University computer science professors will lead a new Google AI lab opening in January in the town of Princeton. The lab is expected to expand New Jersey’s burgeoning innovation ecosystem by building a collaborative effort to advance research in artificial intelligence.

You might also like

Asimov’s Three Laws Of Robotics And AI Autonomous Cars 

Tesla Working on Full Self-Driving Mode, Extending AI Lead 

RAND Corp. Finds DoD “Significantly Challenged” in AI Posture 

The lab, at 1 Palmer Square, will start with a small number of faculty members, graduate and undergraduate student researchers, recent graduates and software engineers. The lab builds on several years of close collaboration between Google and professors Elad Hazan and Yoram Singer, who will split their time working for Google and Princeton.

The work in the lab will focus on a discipline within artificial intelligence known as machine learning, in which computers learn from existing information and develop the ability to draw conclusions and make decisions in new situations that were not in the original data. Examples include speech recognition systems that transcribe a wide spectrum of voices, and self-driving cars that process complex visual cues. In particular, the work will build on recent advances by Hazan, Singer and colleagues in optimization methods for machine learning to improve their speed and accuracy while reducing the required computing power.

“We feel it’s a great opportunity, both for machine learning theorists at Princeton to benefit from exposure to real-world computing problems, and for Google to benefit from long-term, unconstrained academic research that Google may incorporate into future products,” said Singer.

Hazan said Princeton has longstanding strength in the mathematics and theory behind machine learning, optimization and computing in general. “As academics we try to think about theory for solving problems that are, many times, in the abstract, and it’s very helpful for us to be in touch with real-world problems,” he said.

“A primary focus of the group is developing efficient methods for faster training of learning machines,” said Hazan. One of the most popular methods to train deep neural networks, a powerful current approach to machine learning, is an algorithm called AdaGrad, co-developed by Hazan and Singer with their colleague Stanford University professor John Duchi. “The study of efficient mathematical optimization has deep roots in Princeton” said Hazan, “starting from the work of John von Neumann,” who was a visiting faculty member at the University before moving to the neighboring Institute for Advanced Study.

Von Neumann was also the founder of game theory, which is of great relevance to creating optimization algorithms that cope effectively with various types of noise, or spurious information in data, said Hazan. In the field of mathematical optimization, such robust algorithms are said to attain “no regret guarantees.”

“Computing started at Princeton more than 80 years ago when alumnus Alan Turing first introduced a theory for how machines could calculate,” said Emily Carter, dean of the School of Engineering and Applied Science. “This collaboration is another excellent example of how fundamental insights in mathematics and theoretical computer science drive new technologies with benefits far beyond the original domain of the work.”

Jennifer Rexford, chair of the Department of Computer Science, said the new venture comes at a time of significant growth in computer science and related areas of data science at Princeton. “The work with Google will complement all three pillars of excellence that make data science at Princeton strong today: a foundation in the theory and math behind computing; collaborations that are accelerating discovery across fields such as genomics, neuroscience, chemistry, psychology and sociology; and leadership, through our Center for Information Technology Policy, in the broader societal implications of computing such as bias and ethics in AI, privacy and security,” Rexford said.

“It’s an exciting opportunity to work with a leading company while also maintaining the strong academic independence and freedom that is essential to Princeton,” Rexford said.

The decision to open a lab in Princeton reflects Google’s longstanding openness to collaborating with academic researchers, supporting the open-source community and publishing results in peer-reviewed conferences and journals, said Andrew Pierson, a Google program manager. On a practical level, Google’s enormous computing resources give researchers the ability to run experiments that would otherwise be difficult as they optimize algorithms that deal with millions of variables and perform trillions of calculations, Pierson said.

But a bottom-line motivation for collaborating with Princeton, said Amy McDonald Sandjideh, a technical program manager at Google, is talent. Because the community of artificial intelligence researchers is small, she said, continued progress requires new sources of inspiration and collaboration.

“We specifically chose a location very close to the University to promote such collaborations,” McDonald Sandjideh said. “Particularly having access to graduate students and even undergrads can provide a lot of inspiration. Sometimes you learn the most from teaching and helping younger people understand what you’ve been working on and that can really push you in new directions. That is a great benefit for Google in working more closely with universities like Princeton that have really excellent minds.”

Read the source press release from Princeton University.

Credit: Source link

Previous Post

Learning Machine Learning with Fuze

Next Post

AI / Machine learning Cloud APIs: AWS – Azure - GCP - our experience

Related Posts

Asimov’s Three Laws Of Robotics And AI Autonomous Cars 
Artificial Intelligence

Asimov’s Three Laws Of Robotics And AI Autonomous Cars 

February 26, 2021
Tesla Working on Full Self-Driving Mode, Extending AI Lead 
Artificial Intelligence

Tesla Working on Full Self-Driving Mode, Extending AI Lead 

February 25, 2021
RAND Corp. Finds DoD “Significantly Challenged” in AI Posture 
Artificial Intelligence

RAND Corp. Finds DoD “Significantly Challenged” in AI Posture 

February 25, 2021
SolarWinds Hackers Targeted Cloud Services as a Key Objective 
Artificial Intelligence

SolarWinds Hackers Targeted Cloud Services as a Key Objective 

February 25, 2021
IBM Reportedly Retreating from Healthcare with Watson 
Artificial Intelligence

IBM Reportedly Retreating from Healthcare with Watson 

February 25, 2021
Next Post
AI / Machine learning Cloud APIs: AWS – Azure – GCP – our experience

AI / Machine learning Cloud APIs: AWS – Azure - GCP - our experience

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Jumpstart your cloud transformation journey with fast object storage
Data Science

Jumpstart your cloud transformation journey with fast object storage

March 2, 2021
IBM Cloud Satellite goes GA
Big Data

IBM Cloud Satellite goes GA

March 1, 2021
Novel machine-learning tool can predict PRRSV outbreaks and biosecurity effectiveness
Machine Learning

Novel machine-learning tool can predict PRRSV outbreaks and biosecurity effectiveness

March 1, 2021
How to Change the WordPress Admin Login Logo
Learn to Code

Use Touch ID for sudo on Mac

March 1, 2021
Judge approves $650m settlement for Facebook users in privacy, biometrics lawsuit
Internet Security

Judge approves $650m settlement for Facebook users in privacy, biometrics lawsuit

March 1, 2021
SolarWinds Blames Intern for Weak Password That Led to Biggest Attack in 2020
Internet Privacy

SolarWinds Blames Intern for Weak Password That Led to Biggest Attack in 2020

March 1, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Jumpstart your cloud transformation journey with fast object storage March 2, 2021
  • IBM Cloud Satellite goes GA March 1, 2021
  • Novel machine-learning tool can predict PRRSV outbreaks and biosecurity effectiveness March 1, 2021
  • Use Touch ID for sudo on Mac March 1, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates