Saturday, April 10, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Google leveraging machine learning to predict India floods

March 11, 2019
in Machine Learning
Why Google chose Patna for a flood forecasting project in India: Sella Nevo
591
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: Google News

Sella Nevo, a software engineer who specializes in machine learning (ML) research and development, currently leads the Google Flood Forecasting Initiative that aims to provide flood forecasts and warnings in developing countries. He was also one of the co-creators of the ML model used in Google Duplex. In a phone interview from Israel, Nevo–a keynote speaker at the Mint Digital Innovation Summit explains why Google chose Patna in India as a pilot for his project, and how the company plans to scale up this model not only in India but globally too. Edited excerpts:

You might also like

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

IBM releases Qiskit modules that use quantum computers to improve machine learning

One-stop machine learning platform turns health care data into insights | MIT News

What’s the goal of Google’s Flood Forecasting project?

This Flood Forecasting Initiative is Google’s effort to provide high accuracy, high resolution flood forecasting. It’s not global yet, and our focus is in using the Google’s machine learning (ML) expertise and our computational power as well as our access to various types of resources and data to substantially improve flood forecasting systems, their accuracy, their lead time and so on.

Why did you choose India, and specifically Patna, to start this pilot?

We decided to start in India because the effect of flooding in this country is immense–about 20% of fatalities worldwide from flooding occur in India. We also believe that India is an incredible place for support innovation–it’s a place where both the usage of the internet access is increasing incredibly fast and there is a lot of room for both collaborating with the government for innovative solutions and being able to provide value to individuals on the ground.

We chose Patna in India for several reasons. One is we wanted to start with a location where the rain is likely to cause flooding so that we know we’ll be able to provide assistance in the short term as we prepare to scale up in the long term. We also found that Patna has an incredibly interesting and challenging location in the sense that there are a lot of things like embankments and other man-made structures that we need to be able to deal with.

What’s the progress you have made so far? How are you planning to scale up this pilot?

The progress we’ve made so far is mainly exemplified by the pilot that we’ve done in Patna–there was one significant event that the Central Water Commission sent an alert for this past monsoon season in September. For that event, we sent an alert to people within about 1,000 square kilometers around Patna and the alert had a map that indicated which areas are likely to get flooded or are somewhat likely to get flooded and which areas are not likely to get flooded.

We’re very happy with the accuracy of our modeling–broadly it was over 90% accurate across different metrics that we use to measure our accuracy. Our main focus now with the system is to scale it up to additional locations. Our goal is to launch in as many places as we can within the Ganges and Brahmaputra basins.

What kind of help are you getting from the Indian government in this regard?

Our collaboration with the Indian government includes two things. One is they share with us the data that is also accessible online. We just collaborate to make sure that the data transfer is reliable but they share with us the both the stream gauge measurements as well as forecasts based on their gauge-to-gauge forecasting system. We use these as inputs to our system which then outputs the more especially accurate map to know which areas exactly are going to be inundated. The second thing is that it is the mandate of the Indian government, and specifically that of the Central Water Commission, to provide information to people through a system. We see this project as empowering them (the government) in doing that.

There are quite a number of new technologies and methods for developing flood forecast maps. What’s the Google approach, and how unique is it?

First is a new approach towards generating high resolution elevation maps. Google has developed a method of generating elevation maps at 1 meter resolution, based solely on completely standard optical imagery and that allows you to do this anywhere in the world. We currently try to update it annually where necessary, which is incredibly critical because a lot of rivers, especially ones with severe flooding, tend to be dynamic and change from year to year. The second area is on how to actually do what’s called the hydraulic modeling more efficiently so that we can scale it up. Hydraulic modeling is the modeling of how the water will behave when it moves across the floodplain, which areas it will go to, and which areas are going to be affected and which ones are going to be safe.

What are the challenges and how are you using ML to address them?

Other than the challenge of getting elevation maps, there is also the challenge of computational complexity. If you want to have a high resolution model, it becomes incredibly computationally expensive.

We are working on using machine learning-based methods to make this modeling substantially more efficient than the classic finite element solution methods for solving this. We are also trying to do some remote discharge estimation, which is trying to estimate how much water has gone through a river based on satellite data and there we are using machine learning to integrate data from optical imagery, infrared imagery, radar, as well as microwave signals. So that is again a place where we think we are doing something that is totally different from that have been tried so far in this field.

Is this project basically the premise for showcasing the use of AI for social good?

I wouldn’t say that its first goal is to showcase that. I think the first goal is to actually achieve social good in the sense of preventing fatalities and other harm that are currently caused by floods, but I think it is definitely an excellent example of how AI can be very, very impactful in these kinds of areas.

While we see, on the one hand, that AI is helping individuals, businesses and governments, there is simultaneously a lot of apprehension about AI being misused–the bias in algorithms and the impact of AI and robotics on jobs, the fear of a sentient AI overpowering humans, being cases in point. I would love your thoughts on this dystopian way of looking at AI.

I think sometimes AI can be an umbrella term to a large number of algorithms, topics and social issues and I think it might be useful to separate those out. I think there are a lot of very complicated issues–the interaction between AI and society. There’re a lot of people who are much smarter than me and have a lot more to say about that, (and they) already disagree about what directions we’re going out towards as a society.

I don’t know if I have something incredibly intelligent to say about that but I do think there are a lot of cases and I think that the parts that I know more of–and the things that I do day-to-day that are more related to these types of machine learning efforts–there are very, very clear and obvious things that we can do and we should do and which can have an incredibly positive impact. I think that if you don’t put it under the kind of broad AI term umbrella, it’s pretty clear to see that these do not create those same risks. I don’t think that in these cases (such as flood forecasting), there is a genuine fear of robot uprising. (laughs).

Credit: Google News

Previous Post

Building a Shiny App to Show the Impact of Vaccines (with R code)

Next Post

All New and Improved Intelligent Calendar for Salespeople: The Salesforce Inbox Calendar

Related Posts

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
IBM releases Qiskit modules that use quantum computers to improve machine learning
Machine Learning

IBM releases Qiskit modules that use quantum computers to improve machine learning

April 10, 2021
One-stop machine learning platform turns health care data into insights | MIT News
Machine Learning

One-stop machine learning platform turns health care data into insights | MIT News

April 10, 2021
Machine learning: is there a limit to technological patents in Brazil?
Machine Learning

Disclosing AI Inventions – Part I: Identifying the Unique Disclosure Issues

April 10, 2021
Artificial Intelligence and Machine Learning: Demographics & Firmographics
Machine Learning

Artificial Intelligence and Machine Learning: Demographics & Firmographics

April 10, 2021
Next Post

All New and Improved Intelligent Calendar for Salespeople: The Salesforce Inbox Calendar

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison
Data Science

Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison

April 10, 2021
IBM releases Qiskit modules that use quantum computers to improve machine learning
Machine Learning

IBM releases Qiskit modules that use quantum computers to improve machine learning

April 10, 2021
Hackers Tampered With APKPure Store to Distribute Malware Apps
Internet Privacy

Hackers Tampered With APKPure Store to Distribute Malware Apps

April 10, 2021
5 Dominating IoT Trends Positively Impacting Telecom Sector in 2021
Data Science

5 Dominating IoT Trends Positively Impacting Telecom Sector in 2021

April 10, 2021
One-stop machine learning platform turns health care data into insights | MIT News
Machine Learning

One-stop machine learning platform turns health care data into insights | MIT News

April 10, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU April 10, 2021
  • Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison April 10, 2021
  • IBM releases Qiskit modules that use quantum computers to improve machine learning April 10, 2021
  • Hackers Tampered With APKPure Store to Distribute Malware Apps April 10, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates