Thursday, April 15, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

Deep Learning techniques for Cyber Security

May 2, 2020
in Data Science
Deep Learning techniques for Cyber Security
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

 

You might also like

DSC Weekly Digest 12 April 2021

6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome

Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft

For the first time, I taught an AI for Cyber Security course at the University of Oxford.

 

I referred to this paper from Johns Hopkins which covered Deep Neural networks for Cyber Security (A Survey of Deep Learning Methods for Cyber Security) – references below where you can download the full paper for free.

 

The paper covers various deep learning algorithms in Cyber Security

I summarise from the paper below, the problems in Cyber Security and the deep neural networks algorithms that can address them

 

Cyber Security problems

Detecting and Classifying Malware: The number and variety of malware attacks are continually increasing, making it more difficult to defend against them using standard methods. DL provides an opportunity to build generalizable models to detect and classify malware autonomously. There are a number of ways to detect malware.

 

Autonomously classifying malware can provide important information about the source and motives of an adversary without requiring analysts to devote significant amounts of time to malware analysis. This is especially important with the number of new malware binaries and malware families growing rapidly. Classification means assigning a class of malware to a given sample, whereas detection only involves detecting malware, without indicating which class of malware it is.

 

Domain Generation Algorithms and Botnet Detection (DGA): DGAs are commonly used malware tools that generate large numbers of domain names that can be used for difficult-to-track communications with C2 servers. The large number of varying domain names makes it difficult to block malicious domains using standard techniques such as blacklisting or sink-holing. DGAs are often used in a variety of cyber-attacks, including spam campaigns, theft of personal data, and implementation of distributed denial-of-service (DDoS) attacks.

 

Drive-By Download Attacks: Attackers often exploit browser vulnerabilities. By exploiting flaws in plugins, an attacker can redirect users away from commonly used websites, to websites where exploit code forces users to download and execute malware. These types of attacks are called drive-by download attacks.

 

Network Intrusion Detection: Network intrusion detection systems are essential for ensuring the security of a network from various types of security breaches. A number of machine learning and deep learning algorithms are used in network detection.

 

File Type Identification: Generally, humans are not very effective at identifying data that is being exfiltrated once it has been encrypted. Signature-based approaches are similarly unsuccessful at this task. Therefore, a number of ML/DL techniques can be applied to detect file types

 

Network Traffic Identification: A set of techniques used to detect network level protocol types.

 

SPAM Identification: ML and DL algorithms used to detect SPAM

 

Insider Threat Detection: One of the major cyber security challenges today is insider threat, which results in the theft of information or the sabotaging of systems. The motivations and behaviors of insider threats vary widely; however, the damage that insiders can inflict is significant. A number of ML and DL algorithms are used in the detection of insider threats.

 

 Border Gateway Protocol Anomaly Detection: The Border Gateway Protocol (BGP) is an internet protocol that allows for the exchange of routing and reachability information among autonomous systems. This capability is essential to the functioning of the internet, and exploitation of BGP flaws can result in DDoS attacks, sniffing, rerouting, theft of network topology data, etc. It is therefore essential to identify anomalous BGP events in real time to mitigate any potential damages.

 

Verification If Keystrokes Were Typed by a Human: Keystroke dynamics is a biometric technique that collects the timing information of each keystroke – this information can be used to identify people or anomalous patterns.

 

User Authentication: The ability to detect users based on various signals – behavioral and physiological features based on their  activity patterns

 

False Data Injection Attack Detection: Cyber-physical systems play an important role in critical infrastructure systems, because of their relationship to the smart grid. Smart grids leverage cyber-physical systems to provide services with high reliability and efficiency, with a focus on consumer needs. These smart grids are capable of adapting to power demands in real time, allowing for an increase in functionality. However, these devices rely on information technology, and that technology is susceptible to cyber-attack. One such attack is false data injection (FDI), whereby false information is injected into the network to reduce its functionality or even break it entirely.

 

 

Deep learning detection techniques

The following techniques are used to address Cyber Security problems as per the paper

 

Autoencoders

Malware Detection

Malware Classification

Intrusion Detection

Autoencoder Intrusion Detection (IoT)

File Type Identification

Network Traffic Identification

Spam identification

Impersonation Attacks

User Authentication

 

CNN

Malware detection

Drive-by Download Attack

Malware Detection

Intrusion Detection

Traffic Identification

Drive-by Download Attack

 

RNN

Malware Detection

 

DNN

Malware Classification

Intrusion Detection

Insider Threat

 

GAN

DGA

 

RBM

Intrusion Detection

Malware Detection

Spam Identification

 

 

RNN

Malware Detection

DGA

Intrusion Detection

Intrusion Detection (Vehicles)

Border Gateway Protocol

Anomaly Detection

Keystroke Verification Custom

Intrusion Detection (IoT)

 

Source: A Survey of Deep Learning Methods for Cyber Security


Credit: Data Science Central By: ajit jaokar

Previous Post

Dascena raises $50M in Series A round, publishes data on machine learning in sepsis prediction

Next Post

Trump bans acquisition of foreign power grid equipment, citing hacking threats

Related Posts

DSC Weekly Digest 01 March 2021
Data Science

DSC Weekly Digest 12 April 2021

April 14, 2021
6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome
Data Science

6 Limitations of Desktop System That QuickBooks Hosting Helps Overcome

April 13, 2021
Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft
Data Science

Robust Artificial Intelligence of Document Attestation to Ensure Identity Theft

April 13, 2021
Trends in custom software development in 2021
Data Science

Trends in custom software development in 2021

April 13, 2021
Epoch and Map of the Energy Transition through the Consensus Validator
Data Science

Epoch and Map of the Energy Transition through the Consensus Validator

April 13, 2021
Next Post
Trump bans acquisition of foreign power grid equipment, citing hacking threats

Trump bans acquisition of foreign power grid equipment, citing hacking threats

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Three Privacy Preserving Machine Learning Techniques Solving This Decade’s Most Important Issue
Machine Learning

Three Privacy Preserving Machine Learning Techniques Solving This Decade’s Most Important Issue

April 15, 2021
5 Ways Conversational AI is Shaping the Future of Learning | by Aurosikha Priyadarshini | Apr, 2021
Neural Networks

5 Ways Conversational AI is Shaping the Future of Learning | by Aurosikha Priyadarshini | Apr, 2021

April 15, 2021
Marketing Automation Technology for Revenue & Growth
Marketing Technology

Marketing Automation Technology for Revenue & Growth

April 15, 2021
Six courses to build your technology skills in 2021 – IBM Developer
Technology Companies

A brief intro to Red Hat OpenShift for Node.js developers – IBM Developer

April 15, 2021
Microsoft Defender for Endpoint now protects unmanaged BYO devices
Internet Security

Microsoft Defender for Endpoint now protects unmanaged BYO devices

April 15, 2021
New JavaScript Exploit Can Now Carry Out DDR4 Rowhammer Attacks
Internet Privacy

New JavaScript Exploit Can Now Carry Out DDR4 Rowhammer Attacks

April 15, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Three Privacy Preserving Machine Learning Techniques Solving This Decade’s Most Important Issue April 15, 2021
  • 5 Ways Conversational AI is Shaping the Future of Learning | by Aurosikha Priyadarshini | Apr, 2021 April 15, 2021
  • Marketing Automation Technology for Revenue & Growth April 15, 2021
  • A brief intro to Red Hat OpenShift for Node.js developers – IBM Developer April 15, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates