Tuesday, March 2, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

Data Scientists Role & Ethics

March 4, 2019
in Data Science
Data Scientists Role & Ethics
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: Data Science Central

What data scientists do? 

You might also like

Tweaking Algorithmic Filtering to Combat Fake News

Jumpstart your cloud transformation journey with fast object storage

(Part 2 of 4) How to Modernize Enterprise Data and Analytics Platform – by Alaa Mahjoub, M.Sc. Eng.

As per my personal perception, i do break data science down into three components: 

(1) business intelligence, which is essentially about “taking data that the company has and getting it in front of the right people” in the form of dashboards, reports, and emails; 

(2) decision science, which is about “taking data and using it to help a company make a decision”; 

(3) machine learning, which is about “how can we take data science models and put them continuously into production.”

We now know how data science works, at least in the tech industry. First, data scientists lay a solid data foundation in order to perform robust analytics. Then they use online experiments, among other methods, to achieve sustainable growth. Finally, they build machine learning pipelines and personalized data products to better understand their business and customers and to make better decisions. In other words, in tech, data science is about infrastructure, testing, machine learning for decision making, and data products.

Nearly all of my friends understand that working data scientists make their daily bread and butter through data collection and data cleaning; building dashboards and reports; data visualization; statistical inference; communicating results to key stakeholders; and convincing decision makers of their results.

As we’re seeing rapid developments in both the open-source ecosystem of tools available to do data science and in the commercial, productized data-science tools, we’re also seeing increasing automation of a lot of data-science drudgery, such as data cleaning and data preparation. It has been a common trope that most of a data scientist’s valuable time is spent simply finding, cleaning, and organizing data, leaving only less to actually perform analysis.

Ethics is among the field’s biggest challenge for the data scientist.

I think that imprecise ethics, no standards of practice, and a lack of consistent vocabulary are enough challenges for data scientist today. 

We need to have that ethical understanding, we need to have that training, and we need to have something akin to a Hippocratic oath. And we need to actually have proper licenses so that if you actually do something unethical, perhaps you have some kind of penalty, or disbarment, or some kind of recourse, something to say this is not what we want to do as an industry, and then figure out ways to remediate people who go off the rails and do things because people just aren’t trained and they don’t know.

We’re approaching a consensus that ethical standards need to come from within data science itself, as well as from legislators, grassroots movements, and other stakeholders. Part of this movement involves a reemphasis on interpretability in models, as opposed to black-box models. That is, we need to build models that can explain why they make the predictions they make. Deep learning models are great at a lot of things, but they are infamously uninterpretable.

Many dedicated, intelligent researchers, developers, and data scientists are making headway here with work such as Lime, a project aimed at explaining what machine learning models are doing.

Please share your opinion also……

 


Credit: Data Science Central By: Ajit Singh

Previous Post

Review: Google Cloud AutoML is truly automated machine learning

Next Post

Researchers Link 'Sharpshooter' Cyber Attacks to North Korean Hackers

Related Posts

Tweaking Algorithmic Filtering to Combat Fake News
Data Science

Tweaking Algorithmic Filtering to Combat Fake News

March 2, 2021
Jumpstart your cloud transformation journey with fast object storage
Data Science

Jumpstart your cloud transformation journey with fast object storage

March 2, 2021
(Part 2 of 4) How to Modernize Enterprise Data and Analytics Platform – by Alaa Mahjoub, M.Sc. Eng.
Data Science

(Part 2 of 4) How to Modernize Enterprise Data and Analytics Platform – by Alaa Mahjoub, M.Sc. Eng.

March 1, 2021
Benefits of Data Integration – Data Science Central
Data Science

Benefits of Data Integration – Data Science Central

March 1, 2021
The Bayesian vs frequentist approaches: implications for machine learning – Part two
Data Science

The Bayesian vs frequentist approaches: implications for machine learning – Part two

March 1, 2021
Next Post
Researchers Link ‘Sharpshooter’ Cyber Attacks to North Korean Hackers

Researchers Link 'Sharpshooter' Cyber Attacks to North Korean Hackers

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Singapore eyes more cameras, technology to boost law enforcement
Internet Security

Singapore eyes more cameras, technology to boost law enforcement

March 2, 2021
Why do companies fail to stop breaches despite soaring IT security investment?
Internet Privacy

Why do companies fail to stop breaches despite soaring IT security investment?

March 2, 2021
Tweaking Algorithmic Filtering to Combat Fake News
Data Science

Tweaking Algorithmic Filtering to Combat Fake News

March 2, 2021
Machine Learning Cuts Through the Noise of Quantum Computing
Machine Learning

Machine Learning Cuts Through the Noise of Quantum Computing

March 2, 2021
Google’s Tensorflow Certification & What I’ve Learned Since
Neural Networks

Google’s Tensorflow Certification & What I’ve Learned Since

March 2, 2021
Apple’s data-collection ‘nutrition labels’ for apps will begin appearing next week
Digital Marketing

Pinterest powers up creators during stressful times: Monday’s daily brief

March 2, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Singapore eyes more cameras, technology to boost law enforcement March 2, 2021
  • Why do companies fail to stop breaches despite soaring IT security investment? March 2, 2021
  • Tweaking Algorithmic Filtering to Combat Fake News March 2, 2021
  • Machine Learning Cuts Through the Noise of Quantum Computing March 2, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates