Monday, March 1, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

Building a Shiny App to Show the Impact of Vaccines (with R code)

March 10, 2019
in Data Science
Building a Shiny App to Show the Impact of Vaccines (with R code)
587
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: Data Science Central

This article is by Claus Thorn Ekstrøm.

You might also like

9 Tips to Effectively Manage and Analyze Big Data in eLearning

The Future of AI in Insurance

AI And Automation In HR: The Changing Scenario Of The Business

Debates about vaccines are ongoing in many countries and the debate has reblossomed in Denmark after we’ve had five recent occurrences of measels. While that is nothing compared to the measles outbreak currently ravaging Japanit is still enough to worry the health authorities that it might result in an epidemic. Here we’ll use Shiny to create an app that shows the impact of contagious diseases and the influence of vaccination. Wrapping the computations in a Shiny app will allow non-R-users to tweak the input parameters themselves and observe the consequences of an outbreak. Hopefully, this can lead to a more informed discussion about vaccination.

The SIR compartmental model

The susceptible-infectious-recovered (SIR) model is one of the simplest compartmental models and it has previously been successfully used to describe outbreaks of measles, the flu, small pox, mumps, and rubella. The SIR model is easily extended to accommodate immunities due to earlier infections or vaccinations. Implementing the SIR model in R has previously been documentedso in this post we will extend this previous work adding an additional component to accommodate previously vaccinated individuals, and warp everything in a Shiny app.

We will use a 4-compartment model where each individual in the population initially can be classified into 4 categories: susceptible (S), the infected (I), the recovered (R), and a group of previously vaccinated/immune (V) individuals. The number of individuals starting in compartment I will be very small since that is just the initial number of infected individuals, the initial number of persons in R will be zero since no one has yet had the disease and recovered from it as part of the current outbreak. The remaining individuals will be in either S (have not had the disease before) or V (vaccinated / immune from earlier infection). The setup is sketched in the diagram below. Adding the group V to the SIR model reduces the spread of the disease since the disease cannot infect individuals that it comes into contact with if they are already immune or vaccinated.

This variant of the SIR model is useful for modeling airborne diseases and in the model we disregard individuals who die from other causes than the disease, new vaccinations, and demographic changes in the population.

To compute the consequences of an outbreak we need to set some initial parameters for model. The parameters directly influencing the model are

  • β – the transition rate from compartment S to I. This rate is defined as the basic reproductive number, R0, divided by the infection period (i.e., the average number of individuals each infected person will infect in an unprotected population divided by the number of days that the person can pass on the disease)
  • γ – the transition rate from I to R. This is equal to the inverse of the disease period since once the disease period is over, a person automatically transfers to the R group.

Consequently we need to allow the user to set the following

  • The reproductive number R0 – the average number of individuals that each infected person may infect, i.e., how contagious is the disease,
  • the infection period,
  • the population size,
  • the number of individuals initially infected,
  • the proportion of individuals in the immune/vaccine group V. This percentage should be multiplied by the vaccine effectiveness if it is not 100%.
  • the time frame to consider.

The Shiny App (click on picture to zoom in)

An example of these initial parameters is shown in the code below

Read full article, with R code, here. 

DSC Resources

Follow us: Twitter | Facebook


Credit: Data Science Central By: Germán Arturo Fajardo G.

Previous Post

Decentralized Machine Learning (CRYPTO:DML) Price Up 23.5% This Week

Next Post

Google leveraging machine learning to predict India floods

Related Posts

9 Tips to Effectively Manage and Analyze Big Data in eLearning
Data Science

9 Tips to Effectively Manage and Analyze Big Data in eLearning

March 1, 2021
The Future of AI in Insurance
Data Science

The Future of AI in Insurance

March 1, 2021
AI And Automation In HR: The Changing Scenario Of The Business
Data Science

AI And Automation In HR: The Changing Scenario Of The Business

February 28, 2021
Python vs R! Which one should you choose for data Science
Data Science

Python vs R! Which one should you choose for data Science

February 28, 2021
The Time-Series Ecosystem – Data Science Central
Data Science

The Time-Series Ecosystem – Data Science Central

February 28, 2021
Next Post
Why Google chose Patna for a flood forecasting project in India: Sella Nevo

Google leveraging machine learning to predict India floods

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

9 Tips to Effectively Manage and Analyze Big Data in eLearning
Data Science

9 Tips to Effectively Manage and Analyze Big Data in eLearning

March 1, 2021
Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ
Machine Learning

Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ

March 1, 2021
The Future of AI in Insurance
Data Science

The Future of AI in Insurance

March 1, 2021
Machine Learning as a Service (MLaaS) Market Analysis Technological Innovation by Leading Industry Experts and Forecast to 2028 – The Daily Chronicle
Machine Learning

Machine Learning as a Service (MLaaS) Market Global Sales, Revenue, Price and Gross Margin Forecast To 2028 – The Bisouv Network

March 1, 2021
AI And Automation In HR: The Changing Scenario Of The Business
Data Science

AI And Automation In HR: The Changing Scenario Of The Business

February 28, 2021
Machine learning could aid mental health diagnoses: Study
Machine Learning

Machine learning could aid mental health diagnoses: Study

February 28, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • 9 Tips to Effectively Manage and Analyze Big Data in eLearning March 1, 2021
  • Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ March 1, 2021
  • The Future of AI in Insurance March 1, 2021
  • Machine Learning as a Service (MLaaS) Market Global Sales, Revenue, Price and Gross Margin Forecast To 2028 – The Bisouv Network March 1, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates