Friday, April 23, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Artificial Intelligence – AI: the fragile shield of hype surrounding machine learning

November 24, 2019
in Machine Learning
Artificial Intelligence – AI: the fragile shield of hype surrounding machine learning
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Hemantha Yapa Abeywardena writes from London…

The buzz word is everywhere: sometimes, it sounds scary, because we are told that jobs are going to disappear to robots in the near future and the latter are about to take over us; at the other extreme, according to die-hard optimists, our lives are going to change beyond recognition, thanks to the involvement of the artificial intelligence – AI – in decision making processes.

You might also like

Global Federated Learning Solutions Market (2020 to 2028)

Can machine learning improve debris flow warning?

Twitter Updates its Responsible Machine Learning Initiative

The determined effort by certain vested interests, ranging from hyperactive salesmen in dealing with selling expensive computer systems to fund-hungry start-ups, which want us to believe that AI is about to do everything that an average human being can do – or his or her brain can do.

The AI took a bit of battering recently as the infectious enthusiasm for self-driving cars is yet to hit a road near us in practice, without that being cleared of living beings for it to move without a hitch – or going through a Tesla moment.

I am of the opinion that we are still in fetal stage when it comes to artificial intelligence. We, however, are making exponential progress in a subset of artificial intelligence, known as

<b>machine learning – ML</b>.

What really is machine learning?

It is the ability of a machines to learn from itself, without being at the mercy of the computer programmer, who initially instructed it to do so; a machine, once given the data, tends to teach itself to do things, which a few years ago was mere fantasy.

For instance, if I want tell the following programme to print times table of a particular number, it will certainly do so, because I wrote the programming code for it to do that. Just press the play button and enter a number in the other window, where it asks the question, if you want to see in action.

<iframe src=”https://trinket.io/embed/python/64eee8cbca” width=”100%” height=”300″ frameborder=”0″ marginwidth=”0″ marginheight=”0″ allowfullscreen></iframe>

It, however, would fail miserably, if the user wanted the times table beyond 12; nor would it be in a position to guess the user’s need. Of course, I could have accomplished that too – but with lots of lines of extra code.

The point that I make here is the fact that what you see above is a case of <b>machine-not- learning</b>; it just performs the specific task assigned to it and then just switches itself off.

One of the main problems faced by many industries is coming up with a realistic model to make accurate predictions on a tomorrow’s event/s , based on yesterday’s data, fed into a computer system today. It’s never been easy.

For instance, it has been observed that the flash frequency of male fireflies, which are desperate to attract females in the tropics depends on the temperature; the lower the temperature, the greater the frequency – not much different from us.

In order to come up with a reliable model, a committed biologist can collect the data and meticulously look for a pattern. If it is not perfect, he can tweak and test it too, again and again, up until he is satisfied fully.

The following interactive applet just shows the challenge: as data is scattered in an unknown pattern, we may be tempted to draw a straight line, technically known as the line of best fit – to represent the data and then make the prediction based on it.

We can even tweak it by moving the slider to change the steepness of the line in order to make it slightly better; you may try it here:

<iframe scrolling=”no” title=”firefly” src=”https://www.geogebra.org/material/iframe/id/fcsbahtw/width/700/height/500/border/88888
8/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/true/ctl/f
alse” width=”700px” height=”500px” style=”border:0px;”> </iframe>

The issue, however, is the involvement of the creator at every stage in order to make the model work. With machine learning, that aspect has completely changed.

Of course, we still need programmers to write the computer code. This time, however, once it is written, the machine learns by itself to make the adjustments for heightened accuracy of the model, rather than leaving it to the programmer to code at every stage.

In the following interactive programme, this is what happens; you learn how machine learning works; it is pretty impressive, indeed.

Just click with the mouse anywhere in the block, you will see data points. This time, however, the machine learns and adjusts the line of prediction by itself, without the need of the creator.

This is the machine learning; machine teaches itself how to behave by the data it takes in – a marvelous feat indeed.

<iframe src=”https://editor.p5js.org/undefined/embed/UtOWCSYYF” width=”410″ height=”410″ style=”display:block;margin-left:auto;margin-right:auto;”></iframe>

Thanks to machine learning, there has been an impressive progress in areas such as cancer detection, image classification and speech recognition.

Machines have started learning; they, however, run into problems as those who are involved in the training processes are far from identifying every single factor that determine the situations in question. The failure of weather models to forecast it accurately is a case in point, despite the complex algorithms and computer power.

In this context, the fear or over-excitement over AI is pretty misplaced enthusiasm at present.

Nobody wants it to mimic the dot.com bubble during the last century, repercussions of which are still felt across the world.

– Asian Tribune –

Artificial Intelligence - AI: the fragile shield of hype surrounding machine learning
donate_button.png
diconary view

Share this


Credit: Google News

Previous Post

Can AI help diagnose depression? It’s a long shot

Next Post

How machine learning and AI are helping improve item identification - Yahoo Finance

Related Posts

Artificial Intelligence and Machine Learning: Demographics & Firmographics
Machine Learning

Global Federated Learning Solutions Market (2020 to 2028)

April 23, 2021
Basic laws of physics spruce up machine learning
Machine Learning

Can machine learning improve debris flow warning?

April 23, 2021
Twitter Updates its Responsible Machine Learning Initiative
Machine Learning

Twitter Updates its Responsible Machine Learning Initiative

April 22, 2021
Test Your Machine Learning Model through Model Accuracy
Machine Learning

Test Your Machine Learning Model through Model Accuracy

April 22, 2021
Machine learning helps researchers decipher the Dead Sea Scrolls
Machine Learning

Machine learning helps researchers decipher the Dead Sea Scrolls

April 22, 2021
Next Post
How machine learning and AI are helping improve item identification – Yahoo Finance

How machine learning and AI are helping improve item identification - Yahoo Finance

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Evolving ITOps with AIOps with no-code AI training with Cloud Pak for Watson AIOps – IBM Developer
Technology Companies

Evolving ITOps with AIOps with no-code AI training with Cloud Pak for Watson AIOps – IBM Developer

April 23, 2021
Best free PC antivirus software in 2021
Internet Security

Best free PC antivirus software in 2021

April 23, 2021
Cybercriminals Using Telegram Messenger to Control ToxicEye Malware
Internet Privacy

Cybercriminals Using Telegram Messenger to Control ToxicEye Malware

April 23, 2021
Strategies for a successful Voice of the Customer program
Data Science

Strategies for a successful Voice of the Customer program

April 23, 2021
European Values Confront AI Innovation in EU’s Proposed AI Act  
Artificial Intelligence

European Values Confront AI Innovation in EU’s Proposed AI Act  

April 23, 2021
Artificial Intelligence and Machine Learning: Demographics & Firmographics
Machine Learning

Global Federated Learning Solutions Market (2020 to 2028)

April 23, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Evolving ITOps with AIOps with no-code AI training with Cloud Pak for Watson AIOps – IBM Developer April 23, 2021
  • Best free PC antivirus software in 2021 April 23, 2021
  • Cybercriminals Using Telegram Messenger to Control ToxicEye Malware April 23, 2021
  • Strategies for a successful Voice of the Customer program April 23, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates