Tuesday, March 9, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Apple details Overton AI development tool, whose models have processed ‘billions’ of queries

September 14, 2019
in Machine Learning
Apple details Overton AI development tool, whose models have processed ‘billions’ of queries
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Building, monitoring, and improving machine learning systems is no walk in the park, no matter the circumstances. Data scientists and engineers have to monitor fine-grained quality and diagnose errors in sophisticated apps, not to mention field contradictory or incomplete corpora. To ease the development burden somewhat, Apple developed Overton, a framework intended to automate AI system lifecycles by providing a set of novel high-level abstractions. Given the query “How tall is the president of the United States,” for example, Overton generates a model capable of supplying an answer. (It only supports text processing currently, but Apple is prototyping image, video, and multimodal apps.)

Apple researchers say that Overton has been used in production to support “multiple applications” in both near-real-time and back-of-house processing, and in that time, Overton-based apps have answered “billions” of queries in multiple languages and processed “trillions” of records. “[The] vision is to shift developers to … higher-level tasks instead of lower-level machine learning tasks. [E]ngineers can build deep-learning-based applications without writing any code,” wrote the coauthors of a research paper describing Overton. “Overton [can] automate many of the traditional modeling choices, including deep learning architecture … and [it allows engineer] … to build, maintain, and monitor their application by manipulating data files.”

You might also like

Assessing regulatory fairness through machine learning

Raspberry Pi to get machine learning boost

Dataiku named as Gartner Leader for Data Science and Machine Learning

Overton takes as input a schema containing two elements: data payloads, which describe the input data used to train new or existing AI models, and model tasks, which describe the tasks the model needs to accomplish. Furthermore, the schema defines the input, output, and coarse-grained data flow of the target machine learning model, illustrating not what the model computes but effectively how it computes it.

Overton compiles the schema into many versions of AI development frameworks like Google’s TensorFlow, Apple’s CoreML, or Facebook’s PyTorch, and it then performs a search for the appropriate architecture and hyperparameters (tunable variables that directly affect how well a model trains). On the monitoring side, Overton lets engineers provide tags associated with individual data points, indicating which should be used for training, testing, and development.

Overton employs other useful techniques like model slicing, which lets users identify subsets of the input data critical to the product and use them as a guide to increase representation and minimize bias. Additionally, it natively supports multitask learning, such that Overton predicts all of a model’s tasks (e.g., part-of-speech tagging or typing) concurrently.

Apple researchers say that in qualitative testing, Overton reduced errors 1.7 to 2.9 times versus production systems.

“In summary, Overton represents a first-of-its kind machine-learning lifecycle management system that has a focus on monitoring and improving application quality,” wrote the paper’s coathors. “A key idea is to separate the model and data, which is enabled by a code-free approach to deep learning. Overton repurposes ideas from the database community and the machine learning community to help engineers in supporting the lifecycle of machine learning toolkits.”

In many respects, Overton is merely another take — albeit a highly scalable one — on the raft of “auto ML” tools published by the likes of Uber, Facebook, and others. Databricks just last month launched a tool kit for model building and deployment, which can automate things like hyperparameter tuning, batch prediction, and model search. IBM’s Watson Studio AutoAI — which debuted in June — promises to automate enterprise AI model development, as does Microsoft’s recently enhanced Azure Machine Learning cloud service and Google’s AutoML suite.

But it’s a rare look at the inner workings of a company that’s been reluctant to pull back the curtains on its AI and machine learning research. With any luck, the Overton paper and last week’s Siri disclosures signal the start of a flood of publications.

Credit: Google News

Previous Post

Tools for ML | AI | DS. What and How

Next Post

Franziska Bell, Director of Platform Data Science at Uber

Related Posts

Assessing regulatory fairness through machine learning
Machine Learning

Assessing regulatory fairness through machine learning

March 8, 2021
Raspberry Pi to get machine learning boost
Machine Learning

Raspberry Pi to get machine learning boost

March 8, 2021
Dataiku named as Gartner Leader for Data Science and Machine Learning
Machine Learning

Dataiku named as Gartner Leader for Data Science and Machine Learning

March 8, 2021
Machine Learning Patentability In 2019: 5 Cases Analyzed And Lessons Learned Part 4 – Intellectual Property
Machine Learning

Podcast: Non-Binding Guidance: FDA Regulatory Developments In AI And Machine Learning – Food, Drugs, Healthcare, Life Sciences

March 8, 2021
Here’s an adorable factory game about machine learning and cats
Machine Learning

Here’s an adorable factory game about machine learning and cats

March 8, 2021
Next Post
Franziska Bell, Director of Platform Data Science at Uber

Franziska Bell, Director of Platform Data Science at Uber

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

13 challenges creating an open, scalable, and secure serverless platform – IBM Developer
Technology Companies

10 questions for modernizing your old Java applications – IBM Developer

March 9, 2021
McAfee sells its enterprise business to private equity group as it focuses on consumer security
Internet Security

McAfee sells its enterprise business to private equity group as it focuses on consumer security

March 9, 2021
Microsoft Exchange Cyber Attack — What Do We Know So Far?
Internet Privacy

Microsoft Exchange Cyber Attack — What Do We Know So Far?

March 9, 2021
Measuring progress in Symbolic AI: the biggest surprise in AI trends report from Stanford
Data Science

Measuring progress in Symbolic AI: the biggest surprise in AI trends report from Stanford

March 9, 2021
Assessing regulatory fairness through machine learning
Machine Learning

Assessing regulatory fairness through machine learning

March 8, 2021
How AI Will Power the Next Wave of Healthcare Innovation? | by Shaip | Mar, 2021
Neural Networks

How AI Will Power the Next Wave of Healthcare Innovation? | by Shaip | Mar, 2021

March 8, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • 10 questions for modernizing your old Java applications – IBM Developer March 9, 2021
  • McAfee sells its enterprise business to private equity group as it focuses on consumer security March 9, 2021
  • Microsoft Exchange Cyber Attack — What Do We Know So Far? March 9, 2021
  • Measuring progress in Symbolic AI: the biggest surprise in AI trends report from Stanford March 9, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates