Sunday, February 28, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Artificial Intelligence

AI Transparency, Fairness Get Boost with Naming of Prof. Judea Pearl of UCLA

April 10, 2020
in Artificial Intelligence
AI Transparency, Fairness Get Boost with Naming of Prof. Judea Pearl of UCLA
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Efforts to boost AI transparency and fairness got a boost with the naming of Judea Pearl of UCLA as the World Leader of 2020 by the AI World Society. (GETTY IMAGES)

By AI Trends Staff

You might also like

Asimov’s Three Laws Of Robotics And AI Autonomous Cars 

Tesla Working on Full Self-Driving Mode, Extending AI Lead 

RAND Corp. Finds DoD “Significantly Challenged” in AI Posture 

Efforts to further AI transparency and fairness got a boost recently with the naming of Prof. Judea Pearl of UCLA as the World Leader of 2020 by the AI World Society, a joint effort with the Boston Global Forum that calls for AI to be developed and deployed in ways that benefit all mankind.

Judea Pearl, Professor of Computer Science and Director, Cognition Systems Lab at UCLA

In presenting the award to Prof. Pearl, former Gov. Michael Dukakis, chairman of the institute bearing his name, stated, “I am inspired by your watershed work in establishing cause-and-effect relationships as a statistical and mathematical concept, most especially as we strive to more completely understand the rapidly-evolving impact of AI and machine learning on society.”

An offshoot of the Boston Global Forum, the Michael Dukakis Institute for Leadership and Innovation was born in 2015 with the mission of generating ideas, creating solutions and deploying initiatives to solve global issues, especially focused on cybersecurity and AI.

Prof. Pearl is  the author of the recent, “The Book of Why: The New Science of Cause and Effect,” published in 2018, a study of cause and effect that helps answer difficult questions such as whether a drug cured an illness. Dukakis stated that the book “provides us with the new tools needed to navigate the uncharted waters of causality for students of statistics, economics, social sciences, mathematics and most urgently today, epidemiology.”

Prof. Pearl will serve as a mentor in the AIWS Innovation Network programs in support of those goals.

Causal Reasoning Can Guide AI Algorithms Towards Fairness

How causal reasoning applies to learning algorithms is the subject of a recent paper, “Using Causal Reasoning to Guide Algorithms Toward a Fairer World,” by Ilya Shpitser, Associate Professor of Computer Science at Johns Hopkins University, and Daniel Malinsky, Researcher, Johns Hopkins University. The paper is available at The Ethical Machine.

Learning algorithms find patterns in data they are given. However, in the processes by which the data is collected, relevant variables are defined and hypotheses are formulated that may depend on structural unfairness found in society, the paper suggests.

“Algorithms based on such data could introduce or perpetuate a variety of discriminatory biases, thereby maintaining a cycle of injustice,” the authors state. “The community within statistics and machine learning that works on issues of fairness in data analysis have taken a variety of approaches to defining fairness formally, with the aim of ultimately ensuring that learning algorithms are fair.”

The paper poses some tough questions. For instance, “Since, unsurprisingly, learning algorithms that use unfair data can lead to biased or unfair conclusions, two questions immediately suggest themselves. First, what does it mean for a world and data that comes from this world to be fair? And second, if data is indeed unfair, what adjustments must be made to learning algorithms that use this data as input to produce fairer outputs?”

Cause and effect is a challenging area of statistics; correlation does not imply causation, the experts say. Teasing out causality often involved obtaining data in a carefully controlled way. An early example is the work done by James Lindt for the Royal Navy, when scurvy among sailors was a health crisis. Lindt organized what later came to be viewed as one of the first instances of a clinical trial. He arranged 12 sailors into six pairs, and gave each pair one of six scurvy treatments thought at the time to be effective. Of the treatments, only citrus was effective. That led to citrus products being issued on all Royal Navy ships.

Whether fairness can be defined by computer scientists and engineers is an open question. “Issues of fairness and justice have occupied the ethical, legal, and political literature for centuries. While many general principles are known, such as fairness-as-proportionality, just compensation, and social equality, general definitions have proven elusive,” the paper states.

Moreover, “Indeed, a general definition may not be possible since notions of fairness are ultimately rooted in either ethical principle or ethical intuition, and both principles and intuitions may conflict.”

Mediation analysis is one approach to making algorithms more fair. Needless to say, the work is continuing.

When Big Tech Power Crashes into Fairness

Issues of the power of US big tech companies over personal, private data versus interest in ensuring AI systems are fair, can crash into each other. This is happening in the context of the Global Partnership on AI announced by Canada and France in late 2018, with efforts to extend to the Group of Seven western economies happening since then.

The US has been a holdout. The White House has characterized the effort as unnecessary bureaucracy that threatens to dampen AI development by being overly cautious, according to an account in Wired.

Cédric O, the digital affairs minister of France, raised the question of the Global Partnership in Washington late last year with US chief technology officer Michael Kratsios. Later in an interview, O stated, “There is common consensus but for one country.”

Cédric O, digital minister of France

O fears that without international coordination, unethical uses of AI could flourish. He uses as an example how China has used facial recognition and other technologies to strengthen its authoritarian security apparatus. “If you don’t want a Chinese model in western countries, for instance to use AI to control your population, then you need to set up some rules that must be common,” O stated.

Lynne Parker, the US deputy chief technology officers, says the US worries the group would be too restrictive. “Our concerns are that the group could be too heavy-handed,” she stated. “We believe it’s unethical to hamper and squash down the development of AI technology to the point where you don’t want to use it.”

She noted the US has joined with 40 countries in an effort by the Organization for Economic Cooperation and Development to advise on policy and endorse a set of AI principles.

Read the source releases and articles at World Leader of 2020 from the AWS, at  The Ethical Machine and in Wired.

Credit: AI Trends By: Benjamin Ross

Previous Post

At 9.4% of CAGR, Machine Learning Chip Market Anticipated to Grow

Next Post

Artificial Intelligence: Revolutionary Change for All Business Sector

Related Posts

Asimov’s Three Laws Of Robotics And AI Autonomous Cars 
Artificial Intelligence

Asimov’s Three Laws Of Robotics And AI Autonomous Cars 

February 26, 2021
Tesla Working on Full Self-Driving Mode, Extending AI Lead 
Artificial Intelligence

Tesla Working on Full Self-Driving Mode, Extending AI Lead 

February 25, 2021
RAND Corp. Finds DoD “Significantly Challenged” in AI Posture 
Artificial Intelligence

RAND Corp. Finds DoD “Significantly Challenged” in AI Posture 

February 25, 2021
SolarWinds Hackers Targeted Cloud Services as a Key Objective 
Artificial Intelligence

SolarWinds Hackers Targeted Cloud Services as a Key Objective 

February 25, 2021
IBM Reportedly Retreating from Healthcare with Watson 
Artificial Intelligence

IBM Reportedly Retreating from Healthcare with Watson 

February 25, 2021
Next Post
Artificial Intelligence: Revolutionary Change for All Business Sector

Artificial Intelligence: Revolutionary Change for All Business Sector

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

These four new hacking groups are targeting critical infrastructure, warns security company
Internet Security

These four new hacking groups are targeting critical infrastructure, warns security company

February 28, 2021
The Time-Series Ecosystem – Data Science Central
Data Science

The Time-Series Ecosystem – Data Science Central

February 28, 2021
Accurate classification of COVID‐19 patients with different severity via machine learning – Sun – 2021 – Clinical and Translational Medicine
Machine Learning

Accurate classification of COVID‐19 patients with different severity via machine learning – Sun – 2021 – Clinical and Translational Medicine

February 28, 2021
Privacy Commissioner asks for clarity on minister’s powers in Critical Infrastructure Bill
Internet Security

Privacy Commissioner asks for clarity on minister’s powers in Critical Infrastructure Bill

February 28, 2021
Top Master’s Programs In Machine Learning In The US
Machine Learning

Top Master’s Programs In Machine Learning In The US

February 28, 2021
TikTok agrees to pay $92 million to settle teen privacy class-action lawsuit
Internet Security

TikTok agrees to pay $92 million to settle teen privacy class-action lawsuit

February 28, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • These four new hacking groups are targeting critical infrastructure, warns security company February 28, 2021
  • The Time-Series Ecosystem – Data Science Central February 28, 2021
  • Accurate classification of COVID‐19 patients with different severity via machine learning – Sun – 2021 – Clinical and Translational Medicine February 28, 2021
  • Privacy Commissioner asks for clarity on minister’s powers in Critical Infrastructure Bill February 28, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates