Sunday, February 28, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Neural Networks

AI in Health: Standards, regulations, governance – Becoming Human: Artificial Intelligence Magazine

March 21, 2019
in Neural Networks
AI in Health: Standards, regulations, governance – Becoming Human: Artificial Intelligence Magazine
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: BecomingHuman

Photo by Marcel Scholte on Unsplash

Artificial Intelligence (AI) and machine learning are increasingly being used across healthcare. From diagnostics to targeted treatments, there is emerging evidence of clinical benefit. However, challenges remain, not least the lack of robust governance, regulations, and standards, to ensure applications are safe, effective, and quality assured.

You might also like

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS

Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021

Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021

The BSI’s and Association for Advancement of Medical Instrumentation’s (AAMI) recent publication of The emergence of artificial intelligence and machine learning algorithms in healthcare: Recommendations to support governance and regulation marks significant progress on this front.

The report was commissioned by the UK’s Medicines and Healthcare products Regulatory Agency (MHRA) and includes input from the BSI and AAMI, the US Food and Drug Administration (FDA), and other stakeholders.

Trending AI Articles:

1. Ten trends of Artificial Intelligence (AI) in 2019

2. Bursting the Jargon bubbles — Deep Learning

3. How Can We Improve the Quality of Our Data?

4. Machine Learning using Logistic Regression in Python with Code

Why it matters

AI describes a set of advanced technologies that enable machines to carry out highly complex tasks effectively — tasks that require the equivalent of or more than the intelligence of a person performing the task.

I’ve noted in a previous article on the regulation of medical devices, there are risks associated with the use of AI within the health context. These include:

  • After system development, will the system continue to learn and refine its internal model? How do we regulate medical devices that ‘learn’?;
  • To what extent is human decision making involved? Does the system make suggestions that we can disagree with, or does the system make decisions on its own?

And at the heart of this is the concern that AI and machine learning can and does get it wrong. Outside the context of health, there are some well known examples of this — Tay, Microsoft’s Twitter bot, that went from being friendly to racist and sexist in less than 24 hours, and the case last year of a woman killed by an experimental Uber self-driving car in the US.

Why AI is different

There is a strong case for the introduction of new standards, regulations, and governance frameworks, for AI in health.

First, AI technologies introduce a level of autonomy. In this there are particular challenges in areas where AI solutions potentially provide unsupervised patient care (p.5), for example with monitoring and adjustments of medications for people with long term health conditions.

Second, outputs can change over time in response to new data as is the case with ‘adaptive’ algorithms. This means there is a real need for effective supervision of continuous learning systems. At the heart of this is the question: how do we regulate devices that learn?

The UK’s National Institute for Clinical Evidence (NICE) recently published Evidence Standards Framework for Digital Health Technologies. These standards differentiate between AI using fixed algorithms i.e. where outputs do not automatically change over time; and, those using adaptive algorithms i.e. where algorithms automatically and continually update over time meaning that outputs will also change.

And the distinction between ‘fixed’ and ‘adaptive’ algorithms is an important one. While the NICE Evidence Standards may be the most appropriate to use in the case of fixed algorithms, for adaptive algorithms, they make clear that separate standards will need to apply.

Important here will be how the principles outlined in the UK government’s Code of conduct for data-driven health and care technology move from principles to real world standards, regulations, and governance. Showing ‘what type of algorithm is being developed or deployed, the ethical examination of how the data is used, how its performance will be validated and how it will be integrated into health and care provision’ will be the key here (Principle 7). I suspect going forward there will be requirements to perform regular audits of the metrics and impacts during the use of algorithms in same use cases. This may also become the case where with ‘fixed’ algorithms if there is any change to context.*

And the third point concerns explainability and understanding of how outputs and decisions have been reached. This is significant. A real challenge with algorithms is that it can be difficult or impossible to understand the underlying logic of outputs. While under GDPR there are restrictions on the use of automated decision making with regards to individuals and profiling, the scope of this is yet to be tested [see Rights related to automatic decision making including profiling].

This point on explainability and understanding is important to both ensure systems are safe and effective, and to ensure public and professional confidence and trust.

The recommendations

The report includes a number of recommendations. These include:

  1. Create an international task force to provide oversight for AI in healthcare.
  2. Undertake mapping to review the current standards landscape and identify opportunities.
  3. Develop a proposal for a terminology and categorization standard for AI in healthcare.
  4. Develop a proposal for guidance to cover validation processes.
  5. Create a communications and engagement plan.

All these recommendations make sense. I particularly welcome the comms and engagement plan as one of the key areas of work. This is likely to include a wide range of stakeholders: patients and the public; health and care professionals; policy makers; data scientists and so on. These ongoing conversations will be essential for ensuring confidence and trust in AI systems.

Next Steps

The AI policy and regulatory environment in health is fast moving and complex. Over the next few months, BSI and AAMI intend to publish draft plans for comment on how they intend to implement these recommendations. This is something I very much look forward to reading.

*With thanks to Dr Allison Gardner for clarifying this for me.


Credit: BecomingHuman By: Sophie Taysom

Previous Post

Top Email Design Trends of 2019

Next Post

Machine learning approaches gain critical mass for data pros

Related Posts

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS
Neural Networks

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS

February 27, 2021
Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021
Neural Networks

Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021

February 27, 2021
Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021
Neural Networks

Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021

February 27, 2021
Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal
Neural Networks

Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal

February 26, 2021
How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS
Neural Networks

How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS

February 26, 2021
Next Post
Machine learning approaches gain critical mass for data pros

Machine learning approaches gain critical mass for data pros

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

These four new hacking groups are targeting critical infrastructure, warns security company
Internet Security

These four new hacking groups are targeting critical infrastructure, warns security company

February 28, 2021
The Time-Series Ecosystem – Data Science Central
Data Science

The Time-Series Ecosystem – Data Science Central

February 28, 2021
Accurate classification of COVID‐19 patients with different severity via machine learning – Sun – 2021 – Clinical and Translational Medicine
Machine Learning

Accurate classification of COVID‐19 patients with different severity via machine learning – Sun – 2021 – Clinical and Translational Medicine

February 28, 2021
Privacy Commissioner asks for clarity on minister’s powers in Critical Infrastructure Bill
Internet Security

Privacy Commissioner asks for clarity on minister’s powers in Critical Infrastructure Bill

February 28, 2021
Top Master’s Programs In Machine Learning In The US
Machine Learning

Top Master’s Programs In Machine Learning In The US

February 28, 2021
TikTok agrees to pay $92 million to settle teen privacy class-action lawsuit
Internet Security

TikTok agrees to pay $92 million to settle teen privacy class-action lawsuit

February 28, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • These four new hacking groups are targeting critical infrastructure, warns security company February 28, 2021
  • The Time-Series Ecosystem – Data Science Central February 28, 2021
  • Accurate classification of COVID‐19 patients with different severity via machine learning – Sun – 2021 – Clinical and Translational Medicine February 28, 2021
  • Privacy Commissioner asks for clarity on minister’s powers in Critical Infrastructure Bill February 28, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates