Monday, March 8, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Artificial Intelligence

AI Helping Customer Analytics Dive Deeper into Customer Experience

April 3, 2020
in Artificial Intelligence
AI Helping Customer Analytics Dive Deeper into Customer Experience
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Sephora is credited with making good use of AI in customer analytics with its Visual Artist product, that lets visitors try on cosmetic products. The company has “considered the entire customer journey,” suggests one observer. (GETTY IMAGES)

By AI Trends Staff

You might also like

Autonomous Cars And Minecraft Have This In Common  

Three Finalists Selected in $4.5 Million Watson AI XPrize Competition  

How to Meet the Enterprise-Grade Challenge of Scaling AI 

Corporate marketers are using AI to more deeply analyze the customer experience, and to augment analytics with new approaches and new tools. Here is a review of recent trends in the use of AI by corporate marketers:

Corporate marketers surveyed in August 2019 indicated high interest in rolling out more AI capability, according to the CMO Survey as recently reported in Forbes. The corporate marketers surveyed had increased their use of AI and machine learning in marketing toolkits by 27% over the previous six months. The surveyed marketers projected a 57% increase in use of the AI tools in the coming three years.

Companies with $1 billion or more in revenue and high rates of their sales via the internet were projected to spend more on AI, and they are able to hire needed data scientists to help engage customers. Adoption rates of AI by marketers varied by industry, with the highest projections in transportation, technology and education; the lowest in manufacturing, mining and energy.

The top applications of AI by marketers focus on deriving more value from customers, namely: AI for content personalization (57%); use of predictive analytics (57%) and targeting customer decision-making (50%). Other applications were to optimize advertising and media buying, fine-tuning marketing content and timing, and implementing conversational AI in customer service.

The founder and director of The CMO Survey is Christine Moorman, a Professor of Business Administration at the Fuqua School of Business, Duke University. Her advice to marketers for what to consider when pursuing AI projects included points on using analytics and finding talent.

Christine Moorman, founder and director of The CMO Survey, and a Professor of Business Administration at the Fuqua School of Business, Duke University

“AI is only valuable if marketers use resulting marketing analytics,” she stated. The CMOs reported using marketing analytics to help make decisions 39% of the time, meaning they were mostly unused. It was an improvement, with 29% reporting it was more than they did in 2013.  Moorman challenged them to do better.

“Companies will have to work harder to build AI-driven data and decisions into their standard operating procedures so that they systematically produce a real payoff,” she stated.

Finding the qualified people to make the AI team is a challenge for marketers as it is for managers throughout business. “A gap in talent makes the use of AI challenging,” Moorman stated. Only 2% of respondents said their companies have the right talent to leverage the marketing analytics needed for AI applications. The options are to get lucky in hiring, buy services from a large technology firm, or adjust the AI plan to fit the available talent, she suggested.

Customer Experience Can be Enhanced with Data Unification Tools

Customer experience (CX) can help a company grow when successful, and be a high source of risk when it does not work well. Insights from data are a primary way CX can be improved; however, customer behavior can be chaotic, so interpreting the data is a challenge. “The rules are undefined and the success criteria are ambiguous. CX is the nightmare dataset for an AI developer,” stated Will Thiel, co-founder and principal product architect behind Pointillist, in a recent piece posted on the Pointillist blog.

Will Thiel, Co-founder and Principal Product Architect, Pointillist

A successful application of  AI in customer experience relies on three building blocks: data unification, real-time delivery of insights, and business context, advised Thiel, whose company provides solutions for data unification, more effective customer segmentation and more personalized engagement using AI.

A new generation of data unification tools makes the task of data unification reasonably priced, fast and fairly pain-free. “The tedium of pulling together dozens of data sources is now just background noise,” he suggested.

To deliver insights from every touch point of a customer, customer journey analytics platforms are offering many API options and development kits to help create touchpoint integration.

The way customers interact with a site is distinct for each company. “Customer journeys are as unique to individual businesses as fingerprints,” Thiel stated. For AI to have value, it must know the significance of each customer behavior event in shaping customer behavior. It must know which key performance indicator is affected by customer behavior, whether related to revenue, profitability, customer lifetime value, customer satisfaction or other factors.

“With proper business context, an AI can find touchpoints and tactics which actually shape the customer behaviors behind the business’s primary measures of performance,” Thiel suggests.

A company making good use of AI in analytics is Sephora with its Visual Artist product, he suggests. Visitors can try on cosmetic products such as lipsticks, eyeshadows and highlighters to match their skin tones. ‘Using AI, the tool can map and identify facial features and apply the product to the user’s face,” Thiel stated. “Sephora has thoughtfully considered the entire customer journey. Sephora has surged ahead in AI usage.” Naturally Visual Artist ties into the company’s inventory of products seamlessly, able to make personalized recommendations and offers in real time.

Augmented analytics is helping to advance the field further. Gartner rates it in the top 10 of technology trends in data and analytics. Augmented analytics is defined as the use of enabling technologies such as machine learning and AI to assist with data preparation, insight generation and insight explanation, suggested a recent account in RT Insights. Related tools can assist expert and “citizen data scientists” by automating many aspects of AI model development, management and deployment.

Augmented analytics can be used to help create algorithms to help the users do something they could not do without the tools. In one example, a bank had been targeting older customers for wealth management services. Using augmented analytics, the bank found that clients aged 20 to 35 were likely to transition into wealth management, so also made good targets.

Read the source articles in Forbes, at the CMO Survey, at the Pointillist blog and in RT Insights.

Credit: AI Trends By: Benjamin Ross

Previous Post

Where AI Upscaling Meets Deep Learning – Samsung Global Newsroom

Next Post

Little Blue Pearl - Data Science Central

Related Posts

Autonomous Cars And Minecraft Have This In Common  
Artificial Intelligence

Autonomous Cars And Minecraft Have This In Common  

March 5, 2021
Three Finalists Selected in $4.5 Million Watson AI XPrize Competition  
Artificial Intelligence

Three Finalists Selected in $4.5 Million Watson AI XPrize Competition  

March 5, 2021
How to Meet the Enterprise-Grade Challenge of Scaling AI 
Artificial Intelligence

How to Meet the Enterprise-Grade Challenge of Scaling AI 

March 5, 2021
Convergence of AI, 5G and Augmented Reality Poses New Security Risks 
Artificial Intelligence

Convergence of AI, 5G and Augmented Reality Poses New Security Risks 

March 5, 2021
Survey Finds Many Companies Do Little or No Management of Cloud Spending  
Artificial Intelligence

Survey Finds Many Companies Do Little or No Management of Cloud Spending  

March 5, 2021
Next Post
Little Blue Pearl – Data Science Central

Little Blue Pearl - Data Science Central

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

How Machine Learning Is Changing Influencer Marketing
Machine Learning

How Machine Learning Is Changing Influencer Marketing

March 8, 2021
Video Highlights: Deep Learning for Probabilistic Time Series Forecasting
Machine Learning

Video Highlights: Deep Learning for Probabilistic Time Series Forecasting

March 7, 2021
Machine Learning Market Expansion Projected to Gain an Uptick During 2021-2027
Machine Learning

Machine Learning Market Expansion Projected to Gain an Uptick During 2021-2027

March 7, 2021
Maza Russian cybercriminal forum suffers data breach
Internet Security

Maza Russian cybercriminal forum suffers data breach

March 7, 2021
Clinical presentation of COVID-19 – a model derived by a machine learning algorithm
Machine Learning

Clinical presentation of COVID-19 – a model derived by a machine learning algorithm

March 7, 2021
Okta and Auth0: A $6.5 billion bet that identity will warrant its own cloud
Internet Security

Okta and Auth0: A $6.5 billion bet that identity will warrant its own cloud

March 7, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • How Machine Learning Is Changing Influencer Marketing March 8, 2021
  • Video Highlights: Deep Learning for Probabilistic Time Series Forecasting March 7, 2021
  • Machine Learning Market Expansion Projected to Gain an Uptick During 2021-2027 March 7, 2021
  • Maza Russian cybercriminal forum suffers data breach March 7, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates