Monday, April 12, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

AI Has Become So Human, That You Can’t Tell the Difference

September 25, 2020
in Data Science
AI Has Become So Human, That You Can’t Tell the Difference
587
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

You might be wondering if machines are a threat to the world we live in, or if they’re just another tool in our quest to improve ourselves. If you think that AI is just another tool, you might be surprised to hear that some of the biggest names in technology have a clear concern for it. As Mark Ralston wrote, “The great fear of machine intelligence is that it may take over our jobs, our economies, and our governments”.

You might also like

Interpretive Analytics in One Picture

Job Scope For MSBI In 2021

Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success

If you disagree with this idea, that’s OK, because I didn’t write the previous paragraph. An Artificial Intelligence (AI) solution did. I used a tool called GPT-2 to synthetically generate that text, just by feeding it with the subtitle of this article. Looks pretty human, doesn’t it?

Image for post

Using GPT-2, you can synthetically generate text (highlighted in blue) just by providing an initial input (marked in red). Source: Transformer Hugging Face

GPT-2 is a text-generation system launched by OpenAI (an AI company founded by Elon Musk) that has the ability to generate coherent text from minimal prompts: feed it a title, and it will write a story, give it the first line of a poem and it’ll supply a whole verse. To explore some of its capabilities, take a look at Fake Fake News, a site that uses GPT-2 to generate satire news articles in categories like politics, sports or entertainment.

But the big breakthrough happened this year when OpenAI launched the next generation of GPT-2 (called GPT-3): a tool that is so real, that can figure out how concepts relate to each other, and discern context. From an architecture perspective, GPT-3 is not an innovation at all: it simply takes a well-known approach from machine learning like artificial neural networks, and trains them with data from the internet. The real novelty comes from its massive size: with 175 billion parameters, it’s the largest language model ever created, trained on the largest dataset of any language model.

Image for post

Example of GPT-3 to create an email message. Source: WT.Social

Having the ability to be ‘re-programmed’ for general tasks with very little fine-tuning, GPT-3 seems to be able to do just about anything by conditioning it with a few examples: you can ask it to be a translator, a programmer, a poet, or a famou…. If you’re interested in knowing its performance, The Guardian proved it could synthetically write a whole news article based on an initial statement, taking less time to edit than many human articles.

Take a look at the image below. What do you think of this apartment? Would you consider renting it?:

Image for post

Looks good, right? Well, there’s one minor detail, and it’s that the place doesn’t exist. The whole publication was made by an AI and is not real. None of the pictures, nor the text, came directly from the real world. The listing titles, the descriptions, the picture of the host, even the pictures of the rooms. Trained with millions of pictures of bedrooms, millions of pictures of people, and hundreds of thousands of Airbnb listings, the AI solution from thisrentaldoesnotexist.com was able to create this result. You can try it yourself if you want.

These fake images were produced using Generative Adversarial Networks (GANs for short), which are artificial neural networks capable of producing new content. GANs are an exciting innovation in AI which can create new data instances that resemble the training data, widely used in image, video and voice generation.

Image for post

Some examples of edits performed by GANPaint Studio over the yellow areas

GANs contain a “generator” neural network and a “discriminator” neural network which interact in the following way:

  1. The generator produces fake data samples to mislead the discriminator,
  2. while the discriminator tries to determine the difference between the fake and real data, evaluating them for authenticity.

By iterating through this cycle the goal is that the two networks get better and better until a generator that produces realistic outputs is created (generating plausible examples). Because the discriminator “competes” against the generator, the system as a whole is described as “adversarial”.

Image for post

Example of a GAN training process. At the end, the distributions of the real (in green) and fake samples (in purple) converge. Source: GAN Lab

Also, GANs have some special capabilities: the data used for training them doesn’t need to be labelled (as the discriminator can judge the output of the generator based entirely on the training data itself), and adversarial networks can be used to efficiently create training datasets for other AI applications. GANs are definitely one of the most interesting concepts in modern AI, and we will see more exciting applications in the coming years.

I know it’s shocking, but there’s no reason to be scared (at least not yet) by these technologies. None of the examples provided are magical, and they are the result of scientific research that can be explained and understood. Above all, although some AI outputs can give all the appearance of being “intelligent”, they are still very far away from any human cognition process.

GPT-3 possesses no internal representation of what words actually mean, and lacks the ability to reason abstractly. Also, it can lose coherence over sufficiently long passages, contradict themselv…. GPT-3 is a revolutionary text predictor, but not a threat to human kind.

On the other hand, GANs need a wealth of training data to get started: without enough pictures of human faces, a GAN won’t be able to come up with new faces. They also frequently fail to converge and can be really unstable, since a good synchronization is required between the generator and the discriminator; and once a model is generated, it lacks the generalization capabilities to tackle different types of problems. They can also have problems counting, understanding perspective and recognizing global structures.

No single breakthrough will completely change the world we live in, but we’re witnessing such a massive change in the way we interact with technology that we should prepare ourselves for the world to come. My suggestion is: learn about these technologies. It will ease your way across these extraordinary times.

Interested in these topics? Follow me on Linkedin or Twitter


Credit: Data Science Central By: Diego Lopez Yse

Previous Post

A closer look at Microsoft Azure Arc

Next Post

FinSpy Spyware for Mac and Linux OS Targets Egyptian Organisations

Related Posts

Interpretive Analytics in One Picture
Data Science

Interpretive Analytics in One Picture

April 12, 2021
Job Scope For MSBI In 2021
Data Science

Job Scope For MSBI In 2021

April 11, 2021
Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success
Data Science

Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success

April 11, 2021
Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison
Data Science

Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison

April 10, 2021
5 Dominating IoT Trends Positively Impacting Telecom Sector in 2021
Data Science

5 Dominating IoT Trends Positively Impacting Telecom Sector in 2021

April 10, 2021
Next Post
FinSpy Spyware for Mac and Linux OS Targets Egyptian Organisations

FinSpy Spyware for Mac and Linux OS Targets Egyptian Organisations

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Interpretive Analytics in One Picture
Data Science

Interpretive Analytics in One Picture

April 12, 2021
AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors
Machine Learning

AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors

April 12, 2021
Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning
Machine Learning

Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning

April 11, 2021
Why Machine Learning Over Artificial Intelligence?
Machine Learning

Why Machine Learning Over Artificial Intelligence?

April 11, 2021
27 million galaxy morphologies quantified and cataloged with the help of machine learning
Machine Learning

27 million galaxy morphologies quantified and cataloged with the help of machine learning

April 11, 2021
Machine learning and big data needed to learn the language of cancer and Alzheimer’s
Machine Learning

Machine learning and big data needed to learn the language of cancer and Alzheimer’s

April 11, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Interpretive Analytics in One Picture April 12, 2021
  • AI and Machine Learning Driven Contract Lifecycle Management for Government Contractors April 12, 2021
  • Cambridge Quantum Computing Pioneers Quantum Machine Learning Methods for Reasoning April 11, 2021
  • Why Machine Learning Over Artificial Intelligence? April 11, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates