Sunday, April 11, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Big Data

Aerospike, ThoughtSpot, Alteryx and AI-inspired integration

March 14, 2019
in Big Data
Aerospike, ThoughtSpot, Alteryx and AI-inspired integration
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Credit: ZDnet

Partnerships are nothing new in the analytics world, and neither are integrations between technologies. But this week has seen a a couple of announcements that fall into the partnership/integration category and, this time, it’s all about AI. Aerospike announced interesting integrations with two popular Apache Software Foundation open source data analytics technologies and ThoughtSpot is announcing integration with Alteryx. The latter integration ties in handily with another one Alteryx announced last month. And all of these integrations are AI-relevant.

You might also like

Weaviate is an open-source search engine powered by ML, vectors, graphs, and GraphQL

MinIO simplifies onramps to do-it-yourself hybrid cloud object storage

Trifacta goes all in on the cloud

Aerospike sparks kafkaesque integration

Let’s start with Aerospike, whose eponymous product is an in-memory NoSQL database that can leverage flash memory as well as RAM. The company announced on Tuesday the releases of Aerospike Connect for Spark and Aerospike Connect for Kafka, which connect to Apache Spark and Kafka, respectively. Of course, connectivity to those two open source technologies is fairly common, but there’s more to it than that.

First off, the Spark integration is pretty cool…this isn’t just an important-export bridge…it’s something that lets Spark developers query Aerospike and get the results back as a Spark DataFrame. From there, almost any Spark operation on the data is possible. On the Kafka side, meanwhile, things are nicely bidirectional — so not only can data streaming off Kafka topics come into Aerospike (that support was already there), but now data in Aerospike can stream into a Kafka topic as it changes. As explained to me by Srini Srinivasan, Aerospike’s Chief Product Officer and Founder, the combination of these integrations brings three benefits:

  • By leveraging Aerospike as the main data store, and bringing in an analysis-specific subset of data, Spark users avoid maxing out the RAM on the Spark cluster. Since Aerospike leverages flash, it can have a much larger memory capacity, overall. The integration balances things out.
  • By getting Aerospike data into Spark, the latter’s MLlib component can be leveraged to build machine learning models on that data
  • By using the combination of Aerospike, Kafka and Spark Streaming, those ML models can be kept up-to-date and retrained as the underlying data changes.

Aerospike also announced a new Aerospike REST Client, to be released in April, that will augment its current language-specific software developer kits (SDKs) for developer connectivity.

ThoughtSpot and Alteryx let you search for AI

Moving on, ThoughtSpot is today announcing a partnership and integration with data prep/data pipeline specialist Alteryx that mashes up ThoughtSpot’s search-based analytics with Alteryx’s ability to build machine learning (ML) models. The new integration allows Alteryx users to add native ThoughtSpot Bulk Loader connections and ThoughtSpot TQL statements directly into an Alteryx workflow. As a result, a search-based query can trigger the scoring of data that’s in ThoughtSpot against an Alteryx ML model (which itself is built utilizing R or Python/scikit-learn, behind the scenes). In a call-and-response fashion, the resulting predicted value(s) will come back from Alteryx and can be visualized in ThoughtSpot, automatically.

That may sound a little Rube Goldberg and, granted, I have not had this integration demoed for me. But the ability to pipe a result set out of ThoughtSpot and into an Alteryx workflow, then get the scoring data set back in, seems reasonable. Meanwhile, the search-based interface is already ThoughtSpot’s primary paradigm.

And the plot thickens…

Quite coincidentally to ThoughtSpot’s announcement, I had a briefing this week with Ashley Kramer, Alteryx’s VP of Product Management, and the discussion was specifically focused on Alteryx’s ML capabilities (rather than the data prep and pipelining capabilities for which it is perhaps best known). What I learned was pretty intriguing; and combined with ThoughtSpot’s news, it’s more interesting still.

Also read: Alteryx expands product set, makes data science acquisition
Also read: Domo, Alteryx and Absolutdata take machine learning to business users
Also read: Alteryx Promote delivers AI/machine learning model deployment, management and integration

Here’s the gist: to complement its native ML capabilities, Alteryx last month announced a partnership with H20.ai that allows Alteryx to use H20’s “Driverless AI” AutoML feature. In further synchronicity, I happened to have written about AutoML earlier this week, so it’s all starting to make sense.

Also read: AutoML is democratizing and improving AI

Put the Alteryx integrations all together, and here’s what you get: non-data scientists can use the combination of Alteryx and H20 Driverless AI to build machine learning models, with the feature selection, algorithm selection and hyperparameter tuning performed on an automated basis. Said models can then be brought into Alteryx and could theoretically (I haven’t confirmed it) be used to score data from ThoughtSpot via search-based query, with the prediction data set streaming back to that platform to be visualized automatically.

Coordinating the interaction of these three products likely has some complexity and maybe a couple of gotchas involved, but even just as a proof of concept, it’s impressive. ML model design and training, as well as query, scoring and visualization, all available without coding and without needing data science expertise. I imagine things will simplify in the future, but the fact that all these dots can connect, today, is very exciting.

The analytics bone is connected to the AI bone

All of these integrations, and all of these vendors (Aerospike, ThoughtSpot, Alteryx and H20.ai) are effectively endorsing the notion that the holy grail of data analytics is AI, and the construction and deployment of ML models. They are taking concrete measures to make integrated, code-less AI a reality, adding automation wherever possible, making things scale and, in Aerospike’s case, keeping an eye on continuous integration of data to keep models up-to-date and accurate.

Again, there’s likely a lot of assembly required to get this whole streaming data/in-memory analytics/AI pipeline working properly today, but these sorts of partnerships and integrations are usually a necessary first step before more integrated platforms become available, often from the same vendors.

Credit: ZDnet

Previous Post

AI’s Paradox: The Unsolvable Problem of Machine Learning

Next Post

New WordPress Flaw Lets Unauthenticated Remote Attackers Hack Sites

Related Posts

Weaviate is an open-source search engine powered by ML, vectors, graphs, and GraphQL
Big Data

Weaviate is an open-source search engine powered by ML, vectors, graphs, and GraphQL

April 8, 2021
MinIO simplifies onramps to do-it-yourself hybrid cloud object storage
Big Data

MinIO simplifies onramps to do-it-yourself hybrid cloud object storage

April 7, 2021
Trifacta goes all in on the cloud
Big Data

Trifacta goes all in on the cloud

April 6, 2021
Cloudera Data Platform hits Google Cloud
Big Data

Cloudera Data Platform hits Google Cloud

March 31, 2021
Cloudera fills gap in streaming platform with SQL
Big Data

Cloudera fills gap in streaming platform with SQL

March 31, 2021
Next Post
New WordPress Flaw Lets Unauthenticated Remote Attackers Hack Sites

New WordPress Flaw Lets Unauthenticated Remote Attackers Hack Sites

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Job Scope For MSBI In 2021
Data Science

Job Scope For MSBI In 2021

April 11, 2021
Basic laws of physics spruce up machine learning
Machine Learning

New machine learning method accurately predicts battery state of health

April 11, 2021
Can a Machine Learning Model Predict T2D?
Machine Learning

Can a Machine Learning Model Predict T2D?

April 11, 2021
Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success
Data Science

Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success

April 11, 2021
Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU
Machine Learning

Machine Learning in Finance Market is exclusively demanding in forecast 2029 | Ignite Ltd, Yodlee, Trill A.I., MindTitan, Accenture, ZestFinance – KSU

April 10, 2021
Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison
Data Science

Vue.js vs AngularJS Development in 2021: Side-by-Side Comparison

April 10, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Job Scope For MSBI In 2021 April 11, 2021
  • New machine learning method accurately predicts battery state of health April 11, 2021
  • Can a Machine Learning Model Predict T2D? April 11, 2021
  • Leveraging SAP’s Enterprise Data Management tools to enable ML/AI success April 11, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates