Thursday, March 4, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Machine Learning

Achieving cost-efficient superalloy powder manufacturing using machine learning

January 25, 2021
in Machine Learning
Achieving cost-efficient superalloy powder manufacturing using machine learning
585
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter
Figure 1. Optimization of superalloy powder manufacturing processes using machine learning. Credit: National Institute for Materials Science

High-performance, high-quality Ni-Co-based superalloy powders are promising aircraft engine raw materials. Using machine learning, a NIMS team has succeeded in speedily determining the optimum parameters for manufacturing these types of powders at high yields. The team then demonstrated that these parameters actually led to the low-cost manufacturing of powders suitable for high-pressure turbine disk production. The use of this technique may significantly reduce the cost of practical, large-scale manufacturing of superalloy powders.

You might also like

Las Vegas Valley Water District Selects VODA.ai’s Machine Learning to Support Decision-Making

Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs

6 Ways Machine Learning Can Improve Supply Chain’s Bottom Line

Metal 3-D printing has been rapidly adopted in aerospace engine production, leading to growing demand for low-cost manufacturing and supply of the alloy powders these printing techniques require. When these materials are used in the production of high-pressure turbine disks—a core engine component—they need to meet particularly rigorous requirements: they have to be heat-resistant, highly plastic, high-quality and homogeneous superalloy powders that can be processed into spheres. They also need to be produced at high yields to reduce costs. In practical manufacturing settings, superalloy powders are commonly produced for this purpose using large gas atomizers. It is therefore important to optimize a number of manufacturing parameters, such as the temperatures used to melt metals and the gas pressures. However, this optimization process has proven to be enormously costly, time-consuming and labor-intensive even with the assistance of knowledgeable and experienced experts.

This research team used machine learning in an attempt to optimize gas atomization processes for the manufacturing of Ni-Co-based superalloy powders suitable for high-pressure turbine disk production without relying on the knowledge of experts. As a result, the team succeeded in manufacturing fine-grained powders that can be processed into spheres. In addition, use of the parameters dramatically increased production yields from the conventional 10 to 30% to approximately 78% after performing experiments only six times without using previously collected data. The powder manufactured in this research was approximately 72% cheaper than commercially available powders when the prices of the raw materials were compared.

After years of R&D, NIMS has developed techniques for designing superalloys with controlled physical properties, such as heat resistance. The combined use of these techniques and the parameter optimization technique developed in this research is expected to enable low-cost production of functional superalloy powders designed to meet specific purposes. The prediction accuracy of machine learning models increases as they receive more training data. Superalloy powder manufacturers in the private sector possess largely unexploited manufacturing process data. Integrating this data may further improve the ability of our technique to predict optimum parameters, potentially enabling the manufacturing of higher-quality powders at lower cost.

This research was published in Materials & Design, an open-access journal.


Eliminating cracks in 3-D-printed metal components


More information:
Ryo Tamura et al. Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy, Materials & Design (2020). DOI: 10.1016/j.matdes.2020.109290

Provided by
National Institute for Materials Science


Citation:
Achieving cost-efficient superalloy powder manufacturing using machine learning (2021, January 25)
retrieved 25 January 2021
from https://techxplore.com/news/2021-01-cost-efficient-superalloy-powder-machine.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.


Credit: Google News

Previous Post

CNN Explainer - Interpreting Convolutional Neural Networks (2/N)

Next Post

How to use MLOps for an effective AI strategy

Related Posts

Las Vegas Valley Water District Selects VODA.ai’s Machine Learning to Support Decision-Making
Machine Learning

Las Vegas Valley Water District Selects VODA.ai’s Machine Learning to Support Decision-Making

March 4, 2021
Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs
Machine Learning

Companion Raises $8M Seed Round to Use Machine Learning and Computer Vision to Talk to Dogs

March 3, 2021
6 Ways Machine Learning Can Improve Supply Chain’s Bottom Line
Machine Learning

6 Ways Machine Learning Can Improve Supply Chain’s Bottom Line

March 3, 2021
This Protein Therapeutics Company Integrates Wet Lab For High-Speed Characterization With Machine Learning Technologies To Guide The Search For Better Antibodies
Machine Learning

This Protein Therapeutics Company Integrates Wet Lab For High-Speed Characterization With Machine Learning Technologies To Guide The Search For Better Antibodies

March 3, 2021
Yum! Brands Acquires AI Company
Machine Learning

Yum! Brands Acquires AI Company

March 3, 2021
Next Post
How to use MLOps for an effective AI strategy

How to use MLOps for an effective AI strategy

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Las Vegas Valley Water District Selects VODA.ai’s Machine Learning to Support Decision-Making
Machine Learning

Las Vegas Valley Water District Selects VODA.ai’s Machine Learning to Support Decision-Making

March 4, 2021
The Role Of Artificial Intelligence In The Fight Against COVID | by B-cube.ai | Feb, 2021
Neural Networks

The Role Of Artificial Intelligence In The Fight Against COVID | by B-cube.ai | Feb, 2021

March 4, 2021
MarTech is nearly here – log on next week!
Digital Marketing

Get your free MarTech pass now

March 4, 2021
13 challenges creating an open, scalable, and secure serverless platform – IBM Developer
Technology Companies

13 challenges creating an open, scalable, and secure serverless platform – IBM Developer

March 4, 2021
Ursnif Trojan has targeted over 100 Italian banks
Internet Security

Ursnif Trojan has targeted over 100 Italian banks

March 4, 2021
Hackers Now Hiding ObliqueRAT Payload in Images to Evade Detection
Internet Privacy

Hackers Now Hiding ObliqueRAT Payload in Images to Evade Detection

March 4, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Las Vegas Valley Water District Selects VODA.ai’s Machine Learning to Support Decision-Making March 4, 2021
  • The Role Of Artificial Intelligence In The Fight Against COVID | by B-cube.ai | Feb, 2021 March 4, 2021
  • Get your free MarTech pass now March 4, 2021
  • 13 challenges creating an open, scalable, and secure serverless platform – IBM Developer March 4, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates