Friday, February 26, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Data Science

A short introduction to Log Models

October 21, 2019
in Data Science
Discover how machine learning can solve finance industry challenges by Jannes Klaas
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Why do we take logs of variable in Regression analysis?

We should remember that a regression equation has two parts

You might also like

The Beginner Guide for Creating a Multi-Vendor eCommerce Website

How Machine Learning Discretely Assists Data Scientists

A Plethora of Machine Learning Articles: Part 1

i) The Dependent variable (Predictand)

ii) The Independent variables (Predictors) ; which can be one or more and can be of different types (Categorical or Continuous).

The nature of the regression that we should run depends on the type of Dependent variable that we are dealing with in our model. For example, if the dependent variable is Continuous then we might run OLS (though this does require some other conditions to be satisfied for better results) to get the estimates of the parameters, or if our Predictand is a Categorical variable (Binomial Categorical, 0 or 1) then we might want to run a Logistic regression.

It has to be noted that Linear Regression has certain conditions that need to be satisfied for it to provide good/desirable results, one of them being normal residuals, which in many instances are not. If the error between the observed and the expected values are not normally distributed, that could be because the response variable is skewed. In such cases we can take a log transformation of the variable to normalize it. The question is, whether we should do it. According to some statisticians, there are other regression methods that can handle these problems with efficiency without going through such transformations, the justification being, it is advisable to “use a method that fits the data than to make the data fit the method”. So if the residuals are non-normal we can take help of Robust Regression, Quantile Regression or in some cases MARS. It has to be noted here that OLS regression does not require the variables to be normal, but only the errors which are estimated by the residuals. However, if there are outliers in the dependent or the independent variables in the model taking logarithmic transformations can reduce the effect of those observations.

So if transforming variables for the sake of normalizing them is not a great move, what else could be the reason why variables are still transformed in practice?

One good reason if because it can make substantive sense, one is when the raw values of the variables are not exactly linearly related. For example, a unit change in X can cause a constant percentage change in Y. So a unit change in X might have a small effect on Y to begin with but subsequent increments in X might have greater and greater impacts on Y and thus yielding a non-linear relationship between the raw values of the variables. Taking logarithmic transformation of the response variable helps us in estimating the relationship. A similar transformation of X can be made if a percentage change in X causes a constant unit change in Y, such a transformation is generally taken when the impact of the independent variable on the dependent variable decreases as the value of independent variable increases. Finally we can even take logs of both the response and the independent variable if a percentage change in X causes a constant percentage change in Y which is called a Double-log or a log-log model. The estimated parameter here is interpreted as the elasticity.

In some cases the relationship between variables can be given by

Y= K^a. L^b , where a and b are the parameters you want to estimate. Taking logs on both sides and adding a constant c can help us estimate the relationship using a Linear Regression.

Or, in some other cases a transformation is used to stabilize the variance (Reduce heteroskedasticity).

At the end of the day, all we do is choose a line/functional form that best fits the data and while doing so the primary consideration must be the evaluation of the nature of the relationship between the response and the independent variable. Whatever we do, there has to be a perfectly good reason for doing it.

Credit: Data Science Central By: Sibashis Chakraborty

Previous Post

The Real Reason Gold Is Surging, and Why It Won’t Stop

Next Post

Chinese national sentenced for trying to smuggle military tech from US to China

Related Posts

The Beginner Guide for Creating a Multi-Vendor eCommerce Website
Data Science

The Beginner Guide for Creating a Multi-Vendor eCommerce Website

February 26, 2021
How Machine Learning Discretely Assists Data Scientists
Data Science

How Machine Learning Discretely Assists Data Scientists

February 24, 2021
A Plethora of Machine Learning Articles: Part 1
Data Science

A Plethora of Machine Learning Articles: Part 1

February 24, 2021
What are Data Pipelines ?
Data Science

AI Chatbot Platforms: The Best in the Market and Why to Consider

February 24, 2021
Modernizing Data Dashboards. – Data Science Central
Data Science

Modernizing Data Dashboards. – Data Science Central

February 24, 2021
Next Post
Chinese national sentenced for trying to smuggle military tech from US to China

Chinese national sentenced for trying to smuggle military tech from US to China

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Why your diversity and inclusion efforts should include neurodiverse workers
Internet Security

Why your diversity and inclusion efforts should include neurodiverse workers

February 26, 2021
North Korean Hackers Targeting Defense Firms with ThreatNeedle Malware
Internet Privacy

North Korean Hackers Targeting Defense Firms with ThreatNeedle Malware

February 26, 2021
The Beginner Guide for Creating a Multi-Vendor eCommerce Website
Data Science

The Beginner Guide for Creating a Multi-Vendor eCommerce Website

February 26, 2021
How Artificial Intelligence, Machine Learning will further advance Ed-tech sector?
Machine Learning

How Artificial Intelligence, Machine Learning will further advance Ed-tech sector?

February 26, 2021
Attorney-General urged to produce facts on US law enforcement access to COVIDSafe
Internet Security

Attorney-General urged to produce facts on US law enforcement access to COVIDSafe

February 26, 2021
Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU
Machine Learning

Machine Learning & Big Data Analytics Education Market: Soaring Demand Assures Motivated Revenue Share During 2020-2030 – KSU

February 26, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Why your diversity and inclusion efforts should include neurodiverse workers February 26, 2021
  • North Korean Hackers Targeting Defense Firms with ThreatNeedle Malware February 26, 2021
  • The Beginner Guide for Creating a Multi-Vendor eCommerce Website February 26, 2021
  • How Artificial Intelligence, Machine Learning will further advance Ed-tech sector? February 26, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates