Monday, March 1, 2021
  • Setup menu at Appearance » Menus and assign menu to Top Bar Navigation
Advertisement
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News
No Result
View All Result
NikolaNews
No Result
View All Result
Home Neural Networks

5 Papers on Face Recognition Every Data Scientist Should Read

May 1, 2020
in Neural Networks
5 Papers on Face Recognition Every Data Scientist Should Read
586
SHARES
3.3k
VIEWS
Share on FacebookShare on Twitter

Face recognition, or facial recognition, is one of the largest areas of research within computer vision. We can now use face recognition to unlock our mobile phones, verify identification at security gates, and in some countries, make purchases. With the ability to make numerous processes more efficient, many companies invest into the research and development of facial recognition technology. This article will highlight some of that research and introduce five machine learning papers on face recognition.

With a multitude of real-world applications, face recognition technology is becoming more and more prominent. From smartphone unlocking to face verification payment methods, facial recognition could improve security and surveillance in many ways. However, the technology also poses several risks. Numerous face spoofing methods could be used to fool these systems. Therefore, face anti-spoofing is essential to prevent security breaches.

You might also like

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS

Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021

Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021

In order to support face anti-spoofing research, the authors of this paper introduce a multi-modal face anti-spoofing dataset named CASIASURF. As of the writing of this paper, it is the largest open dataset for face anti-spoofing. Specifically, the dataset includes 21,000 videos taken of 1,000 subjects in RGB, Depth, and IR modalities. In addition to the dataset, the authors present a novel multi-modal fusion model as a baseline for face anti-spoofing.

Published / Last Updated — April 1st, 2019

Authors and Contributors — Shifeng Zhang (NLPR, CASIA, UCAS, China) , Xiaobo Wang (JD AI Research), Ajian Liu (MUST, Macau, China), Chenxu Zhao (JD AI Research), Jun Wan (NLPR, CASIA, UCAS, China), Sergio Escalera (University of Barcelona), Hailin Shi (JD AI Research), Zezheng Wang (JD Finance), Stan Z. Li (NLPR, CASIA, UCAS, China).

Read Now

Jobs in Big Data

In this paper, the authors present a face recognition system called FaceNet. This system uses a deep convolutional neural network which optimizes the embedding, rather than using an intermediate bottleneck layer. The authors state that the most important aspect of this method is the end-to-end learning of the system.

The team trained the convolutional neural network on a CPU cluster for 1,000 to 2,000 hours. They then evaluated their method on four datasets. Notably, FaceNet attained an accuracy of 99.63% on the famous Labeled Faces in the Wild (LFW) dataset, and 95.12% on the Youtube Faces Database.

Published / Last Updated — June 17th, 2015

Authors and Contributors — Florian Schroff, Dmitry Kalenichenko, and James Philbin, from Google Inc.

Read Now

As of the writing of this article, current embedding methods used for face recognition are able to achieve high performance in controlled settings. These methods work by taking an image of a face and storing data about that face in a latent semantic space. However, when tested in fully uncontrolled settings, the current methods cannot perform as well. This is due to instances where facial features are absent from or ambiguous in the image. An example of such a case would be face recognition in surveillance videos, where the quality of the video may be low.

To help address this issue, the authors of this paper propose Probabilistic Face Embeddings (PFEs). The authors propose a method for converting existing deterministic embeddings into PFEs. Most importantly, the authors state that this method effectively improves performance in face recognition models.

Published / Last Updated — August 7th, 2019

Authors and Contributors — Yichun Shi and Anil K. Jain, from Michigan State University.

Read Now

In this study, researchers from SenseTime Research, the University of California San Diego, and Nanyang Technological University studied the effects of noise in large-scale face image datasets. Many large datasets are prone to label noise, due to their scale and cost-effective nature. With this paper, the authors aim to provide knowledge around the source of label noise and the consequences it has in face recognition models. Additionally, they aim to build and release a clean face recognition dataset titled IMDb-Face.

1. 10 trends of Artificial Intelligence (AI)

2. Tutorial: Stereo 3D reconstruction with openCV using an iPhone camera

3. 100 days to Deep Learning: Part 2 the 100 days

4. Bursting the Jargon bubbles — Deep Learning

Two of the main goals of the study were to discover the effects of noise on final performance, and determine the best strategy to annotate face identities. To do so, the team manually cleaned two popular open face image datasets, MegaFace and MS-Celeb-1M. Their experiments showed that a model trained on just 32% of their cleaned MegaFace dataset and 20% of the cleaned MS-Celeb-1M dataset achieved similar performance to models trained on the entirety of the original uncleaned datasets.

Published / Last Updated — July 31st, 2018

Authors and Contributors — Fei Wang (SenseTime), Liren Chen (University of California San Diego), Cheng Li (SenseTime), Shiyao Huang (SenseTime), Yanjie Chen (SenseTime), Chen Qian (SenseTime), and Chen Change Loy (Nanyang Technological University).

Read Now

Numerous studies have been done on deep convolutional neural networks for facial recognition. In turn, numerous large-scale face image datasets have been created to train those models. However, the authors of this paper state that the previously released datasets do not contain much data on pose and age variation in faces.

In this paper, researchers from the University of Oxford introduce the VGGFace2 dataset. This dataset includes images which have a wide range of age, ethnicity, illumination, and pose variations. In total, the dataset contains 3.31 million images and 9,131 subjects.

Published / Last Updated — May 13th, 2018

Authors and Contributors — Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman, from the Visual Geometry Group at the University of Oxford.

Read Now

Credit: BecomingHuman By: Limarc Ambalina

Previous Post

8 Content Marketing Mistakes That Damage SEO

Next Post

OpenAI’s new experiments in music generation create an uncanny valley Elvis – TechCrunch

Related Posts

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS
Neural Networks

How AI Can Be Used in Agriculture Sector for Higher Productivity? | by ANOLYTICS

February 27, 2021
Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021
Neural Networks

Future Tech: Artificial Intelligence and the Singularity | by Jason Sherman | Feb, 2021

February 27, 2021
Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021
Neural Networks

Tackling ethics in AI algorithms: the case of Salesforce | by Iflexion | Feb, 2021

February 27, 2021
Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal
Neural Networks

Creative Destruction and Godlike Technology in the 21st Century | by Madhav Kunal

February 26, 2021
How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS
Neural Networks

How 3D Cuboid Annotation Service is better than free Tool? | by ANOLYTICS

February 26, 2021
Next Post
OpenAI’s new experiments in music generation create an uncanny valley Elvis – TechCrunch

OpenAI’s new experiments in music generation create an uncanny valley Elvis – TechCrunch

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

Plasticity in Deep Learning: Dynamic Adaptations for AI Self-Driving Cars

January 6, 2019
Microsoft, Google Use Artificial Intelligence to Fight Hackers

Microsoft, Google Use Artificial Intelligence to Fight Hackers

January 6, 2019

Categories

  • Artificial Intelligence
  • Big Data
  • Blockchain
  • Crypto News
  • Data Science
  • Digital Marketing
  • Internet Privacy
  • Internet Security
  • Learn to Code
  • Machine Learning
  • Marketing Technology
  • Neural Networks
  • Technology Companies

Don't miss it

Google’s deep learning finds a critical path in AI chips
Machine Learning

Google’s deep learning finds a critical path in AI chips

March 1, 2021
9 Tips to Effectively Manage and Analyze Big Data in eLearning
Data Science

9 Tips to Effectively Manage and Analyze Big Data in eLearning

March 1, 2021
Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ
Machine Learning

Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ

March 1, 2021
The Future of AI in Insurance
Data Science

The Future of AI in Insurance

March 1, 2021
Machine Learning as a Service (MLaaS) Market Analysis Technological Innovation by Leading Industry Experts and Forecast to 2028 – The Daily Chronicle
Machine Learning

Machine Learning as a Service (MLaaS) Market Global Sales, Revenue, Price and Gross Margin Forecast To 2028 – The Bisouv Network

March 1, 2021
AI And Automation In HR: The Changing Scenario Of The Business
Data Science

AI And Automation In HR: The Changing Scenario Of The Business

February 28, 2021
NikolaNews

NikolaNews.com is an online News Portal which aims to share news about blockchain, AI, Big Data, and Data Privacy and more!

What’s New Here?

  • Google’s deep learning finds a critical path in AI chips March 1, 2021
  • 9 Tips to Effectively Manage and Analyze Big Data in eLearning March 1, 2021
  • Machine Learning & Big Data Analytics Education Market 2021 Global Industry Size, Reviews, Segments, Revenue, and Forecast to 2027 – NeighborWebSJ March 1, 2021
  • The Future of AI in Insurance March 1, 2021

Subscribe to get more!

© 2019 NikolaNews.com - Global Tech Updates

No Result
View All Result
  • AI Development
    • Artificial Intelligence
    • Machine Learning
    • Neural Networks
    • Learn to Code
  • Data
    • Blockchain
    • Big Data
    • Data Science
  • IT Security
    • Internet Privacy
    • Internet Security
  • Marketing
    • Digital Marketing
    • Marketing Technology
  • Technology Companies
  • Crypto News

© 2019 NikolaNews.com - Global Tech Updates